Tuladhar Anil M, van Dijk Ewoud, Zwiers Marcel P, van Norden Anouk G W, de Laat Karlijn F, Shumskaya Elena, Norris David G, de Leeuw Frank-Erik
Department of Neurology, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Nijmegen, the Netherlands.
Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
Hum Brain Mapp. 2016 Jan;37(1):300-10. doi: 10.1002/hbm.23032. Epub 2015 Oct 15.
Cerebral small vessel disease (SVD), including white matter hyperintensities (WMH), lacunes and microbleeds, and brain atrophy, are related to cognitive impairment. However, these magnetic resonance imaging (MRI) markers for SVD do not account for all the clinical variances observed in subjects with SVD. Here, we investigated the relation between conventional MRI markers for SVD, network efficiency and cognitive performance in 436 nondemented elderly with cerebral SVD. We computed a weighted structural connectivity network from the diffusion tensor imaging and deterministic streamlining. We found that SVD-severity (indicated by higher WMH load, number of lacunes and microbleeds, and lower total brain volume) was related to networks with lower density, connection strengths, and network efficiency, and to lower scores on cognitive performance. In multiple regressions models, network efficiency remained significantly associated with cognitive index and psychomotor speed, independent of MRI markers for SVD and mediated the associations between these markers and cognition. This study provides evidence that network (in)efficiency might drive the association between SVD and cognitive performance. This highlights the importance of network analysis in our understanding of SVD-related cognitive impairment in addition to conventional MRI markers for SVD and might provide an useful tool as disease marker.
脑小血管病(SVD),包括白质高信号(WMH)、腔隙和微出血以及脑萎缩,与认知障碍有关。然而,这些用于SVD的磁共振成像(MRI)标志物并不能解释在SVD患者中观察到的所有临床差异。在此,我们研究了436名患有脑SVD的非痴呆老年人中SVD的传统MRI标志物、网络效率与认知表现之间的关系。我们从扩散张量成像和确定性流线法计算出一个加权结构连接网络。我们发现,SVD严重程度(以更高的WMH负荷、腔隙和微出血数量以及更低的全脑体积表示)与密度、连接强度和网络效率较低的网络相关,并且与认知表现得分较低相关。在多元回归模型中,网络效率与认知指数和精神运动速度仍显著相关,独立于SVD的MRI标志物,并介导了这些标志物与认知之间的关联。这项研究提供了证据表明网络(无)效率可能驱动SVD与认知表现之间的关联。这突出了网络分析在我们理解SVD相关认知障碍方面除了SVD的传统MRI标志物之外的重要性,并且可能提供一种有用的疾病标志物工具。