Suppr超能文献

与表达抗生素修饰或降解酶的耐药细菌共培养时对几类抗生素的间接耐药性。

Indirect resistance to several classes of antibiotics in cocultures with resistant bacteria expressing antibiotic-modifying or -degrading enzymes.

作者信息

Nicoloff Hervé, Andersson Dan I

机构信息

Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden.

Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden

出版信息

J Antimicrob Chemother. 2016 Jan;71(1):100-10. doi: 10.1093/jac/dkv312. Epub 2015 Oct 14.

Abstract

OBJECTIVES

Indirect resistance (IR), the ability of an antibiotic-resistant population of bacteria to protect a susceptible population, has been previously observed for β-lactamase-producing bacteria and associated with antimicrobial treatment failures. Here, we determined whether other resistance determinants could cause IR in the presence of five other classes of antibiotics.

METHODS

A test was designed to detect IR and 14 antibiotic resistance genes were tested in the presence of 13 antibiotics from six classes. A bioassay was used to measure the ability of resistance-causing enzymes to decrease the concentration of active antibiotics in the medium.

RESULTS

We confirmed IR in the presence of β-lactam antibiotics (ampicillin and mecillinam) when TEM-1A was expressed. We found that bacteria expressing antibiotic-modifying or -degrading enzymes Ere(A), Tet(X2) or CatA1 caused IR in the presence of macrolides (erythromycin and clarithromycin), tetracyclines (tetracycline and tigecycline) and chloramphenicol, respectively. IR was not observed with resistance determinants that did not modify or destroy antibiotics or with enzymes modifying aminoglycosides or degrading fosfomycin. IR was dependent on the resistance enzymes decreasing the concentration of active antibiotics in the medium, hence allowing nearby susceptible bacteria to resume growth once the antibiotic concentration fell below their MIC.

CONCLUSIONS

IR was not limited to β-lactamase-producing bacteria, but was also caused by resistant bacteria carrying cytoplasmic antibiotic-modifying or -degrading enzymes that catalyse energy-consuming reactions requiring complex cellular cofactors. Our results suggest that IR is common and further emphasizes that coinfecting agents and the human microflora can have a negative impact during antimicrobial therapy.

摘要

目的

间接耐药性(IR)是指抗生素耐药菌群体保护敏感菌群体的能力,此前已在产β-内酰胺酶的细菌中观察到,并与抗菌治疗失败有关。在此,我们确定了在存在其他五类抗生素的情况下,其他耐药决定因素是否会导致间接耐药性。

方法

设计了一项检测间接耐药性的试验,并在来自六类的13种抗生素存在的情况下检测了14个抗生素耐药基因。采用生物测定法测量引起耐药性的酶降低培养基中活性抗生素浓度的能力。

结果

当表达TEM-1A时,我们在β-内酰胺类抗生素(氨苄青霉素和美西林)存在的情况下证实了间接耐药性。我们发现,表达抗生素修饰或降解酶Ere(A)、Tet(X2)或CatA1的细菌分别在大环内酯类抗生素(红霉素和克拉霉素)、四环素类抗生素(四环素和替加环素)和氯霉素存在的情况下导致间接耐药性。对于未修饰或破坏抗生素的耐药决定因素,或修饰氨基糖苷类抗生素或降解磷霉素的酶,未观察到间接耐药性。间接耐药性取决于耐药酶降低培养基中活性抗生素的浓度,因此一旦抗生素浓度降至敏感菌的最低抑菌浓度以下,附近的敏感菌就会恢复生长。

结论

间接耐药性不仅限于产β-内酰胺酶的细菌,还由携带细胞质抗生素修饰或降解酶的耐药菌引起,这些酶催化需要复杂细胞辅因子的耗能反应。我们的结果表明间接耐药性很常见,并进一步强调合并感染病原体和人类微生物群在抗菌治疗期间可能产生负面影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验