Dimitrijevic Milan R, Danner Simon M, Mayr Winfried
Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA.
Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
Artif Organs. 2015 Oct;39(10):823-33. doi: 10.1111/aor.12614.
In this review of neurocontrol of movement after spinal cord injury, we discuss neurophysiological evidences of conducting and processing mechanisms of the spinal cord. We illustrate that external afferent inputs to the spinal cord below the level of the lesion can modify, initiate, and maintain execution of movement in absence or partial presence of brain motor control after chronic spinal cord injury. We review significant differences between spinal reflex activity elicited by single and repetitive stimulation. The spinal cord can respond with sensitization, habituation, and dis-habituation to regular repetitive stimulation. Therefore, repetitive spinal cord reflex activity can contribute to the functional configuration of the spinal network. Moreover, testing spinal reflex activity in individuals with motor complete spinal cord injury provided evidences for subclinical residual brain influence, suggesting the existence of axons traversing the injury site and influencing the activities below the level of lesion. Thus, there are two motor control models of chronic spinal cord injury in humans: "discomplete" and "reduced and altered volitional motor control." We outline accomplishments in modification and initiation of altered neurocontrol in chronic spinal cord injury people with epidural and functional electrical stimulation. By nonpatterned electrical stimulation of lumbar posterior roots, it is possible to evoke bilateral extension as well as rhythmic motor outputs. Epidural stimulation during treadmill stepping shows increased and/or modified motor activity. Finally, volitional efforts can alter epidurally induced rhythmic activities in incomplete spinal cord injury. Overall, we highlight that upper motor neuron paralysis does not entail complete absence of connectivity between cortex, brain stem, and spinal motor cells, but there can be altered anatomy and corresponding neurophysiological characteristics. With specific input to the spinal cord below the level of the lesion, the clinical status of upper motor neuron paralysis without structural modification can be modified, and movements can be initiated. Thus, external afferent input can partially replace brain control.
在这篇关于脊髓损伤后运动神经控制的综述中,我们讨论了脊髓传导和处理机制的神经生理学证据。我们阐明,在慢性脊髓损伤后,损伤平面以下脊髓的外部传入输入可在脑运动控制缺失或部分存在的情况下,改变、启动并维持运动的执行。我们回顾了单次刺激和重复刺激所引发的脊髓反射活动之间的显著差异。脊髓可对规律的重复刺激产生敏感化、习惯化和去习惯化反应。因此,重复性脊髓反射活动可有助于脊髓网络的功能构型。此外,对运动完全性脊髓损伤个体的脊髓反射活动测试为亚临床残留脑影响提供了证据,表明存在穿越损伤部位并影响损伤平面以下活动的轴突。因此,人类慢性脊髓损伤存在两种运动控制模式:“不完全性”和“意志性运动控制减弱和改变”。我们概述了在慢性脊髓损伤患者中通过硬膜外刺激和功能性电刺激来改变和启动改变的神经控制方面所取得的成果。通过对腰后根进行非模式化电刺激,有可能诱发双侧伸展以及节律性运动输出。在跑步机行走过程中进行硬膜外刺激可显示运动活动增加和/或改变。最后,意志努力可改变不完全性脊髓损伤中硬膜外诱发的节律性活动。总体而言,我们强调上运动神经元麻痹并不意味着皮质、脑干和脊髓运动细胞之间完全没有连接,但可能存在解剖结构改变和相应的神经生理特征。通过向损伤平面以下的脊髓提供特定输入,可改变无结构改变的上运动神经元麻痹的临床状态,并启动运动。因此,外部传入输入可部分替代脑控制。