Minassian Karen, McKay W Barry, Binder Heinrich, Hofstoetter Ursula S
Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
Hulse SCI Research Lab, Crawford Research Institute, Shepherd Center, Atlanta, GA, USA.
Neurotherapeutics. 2016 Apr;13(2):284-94. doi: 10.1007/s13311-016-0421-y.
Epidural spinal cord stimulation has a long history of application for improving motor control in spinal cord injury. This review focuses on its resurgence following the progress made in understanding the underlying neurophysiological mechanisms and on recent reports of its augmentative effects upon otherwise subfunctional volitional motor control. Early work revealed that the spinal circuitry involved in lower-limb motor control can be accessed by stimulating through electrodes placed epidurally over the posterior aspect of the lumbar spinal cord below a paralyzing injury. Current understanding is that such stimulation activates large-to-medium-diameter sensory fibers within the posterior roots. Those fibers then trans-synaptically activate various spinal reflex circuits and plurisegmentally organized interneuronal networks that control more complex contraction and relaxation patterns involving multiple muscles. The induced change in responsiveness of this spinal motor circuitry to any residual supraspinal input via clinically silent translesional neural connections that have survived the injury may be a likely explanation for rudimentary volitional control enabled by epidural stimulation in otherwise paralyzed muscles. Technological developments that allow dynamic control of stimulation parameters and the potential for activity-dependent beneficial plasticity may further unveil the remarkable capacity of spinal motor processing that remains even after severe spinal cord injuries.
硬膜外脊髓刺激在改善脊髓损伤后的运动控制方面有着悠久的应用历史。本综述聚焦于随着对潜在神经生理机制理解的进展,其再度兴起的情况,以及近期关于其对原本功能不全的自主运动控制的增强作用的报道。早期研究表明,通过放置在腰段脊髓后部硬膜外的电极进行刺激,可以激活参与下肢运动控制的脊髓回路,该损伤平面以下的脊髓已因瘫痪而受损。目前的认识是,这种刺激会激活后根内的大到中等直径的感觉纤维。这些纤维随后通过跨突触激活各种脊髓反射回路和多节段组织的中间神经元网络,这些网络控制着涉及多块肌肉的更复杂的收缩和舒张模式。脊髓运动回路对任何通过损伤后存活的临床无症状的跨损伤神经连接传来的残余上位脊髓输入的反应性变化,可能是硬膜外刺激在原本瘫痪的肌肉中实现基本自主控制的一个合理原因。能够动态控制刺激参数的技术发展以及活动依赖性有益可塑性的潜力,可能会进一步揭示即使在严重脊髓损伤后仍保留的脊髓运动处理的显著能力。