Suppr超能文献

BCL会议:使用基于知识的旋转异构体库进行小分子构象采样。

BCL::Conf: small molecule conformational sampling using a knowledge based rotamer library.

作者信息

Kothiwale Sandeepkumar, Mendenhall Jeffrey L, Meiler Jens

机构信息

Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232 USA.

Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232 USA ; Department of Pharmacology and Biomedical Informatics, Vanderbilt University, Nashville, TN 37212 USA.

出版信息

J Cheminform. 2015 Sep 30;7:47. doi: 10.1186/s13321-015-0095-1. eCollection 2015.

Abstract

The interaction of a small molecule with a protein target depends on its ability to adopt a three-dimensional structure that is complementary. Therefore, complete and rapid prediction of the conformational space a small molecule can sample is critical for both structure- and ligand-based drug discovery algorithms such as small molecule docking or three-dimensional quantitative structure-activity relationships. Here we have derived a database of small molecule fragments frequently sampled in experimental structures within the Cambridge Structure Database and the Protein Data Bank. Likely conformations of these fragments are stored as 'rotamers' in analogy to amino acid side chain rotamer libraries used for rapid sampling of protein conformational space. Explicit fragments take into account correlations between multiple torsion bonds and effect of substituents on torsional profiles. A conformational ensemble for small molecules can then be generated by recombining fragment rotamers with a Monte Carlo search strategy. BCL::Conf was benchmarked against other conformer generator methods including Confgen, Moe, Omega and RDKit in its ability to recover experimentally determined protein bound conformations of small molecules, diversity of conformational ensembles, and sampling rate. BCL::Conf recovers at least one conformation with a root mean square deviation of 2 Å or better to the experimental structure for 99 % of the small molecules in the Vernalis benchmark dataset. The 'rotamer' approach will allow integration of BCL::Conf into respective computational biology programs such as Rosetta.Graphical abstract:Conformation sampling is carried out using explicit fragment conformations derived from crystallographic structure databases. Molecules from the database are decomposed into fragments and most likely conformations/rotamers are used to sample correspondng sub-structure of a molecule of interest.

摘要

小分子与蛋白质靶点的相互作用取决于其形成互补三维结构的能力。因此,对于基于结构和配体的药物发现算法(如小分子对接或三维定量构效关系)而言,完整且快速地预测小分子能够采样的构象空间至关重要。在此,我们从剑桥结构数据库和蛋白质数据库中实验结构中频繁采样的小分子片段推导出了一个数据库。这些片段的可能构象以“旋转异构体”的形式存储,类似于用于快速采样蛋白质构象空间的氨基酸侧链旋转异构体文库。显式片段考虑了多个扭转键之间的相关性以及取代基对扭转轮廓的影响。然后可以通过蒙特卡罗搜索策略重组片段旋转异构体来生成小分子的构象集合。在恢复小分子的实验测定的蛋白质结合构象的能力、构象集合的多样性和采样率方面,将BCL::Conf与其他构象生成方法(包括Confgen、Moe、Omega和RDKit)进行了基准测试。对于Vernalis基准数据集中99%的小分子,BCL::Conf恢复了至少一种与实验结构的均方根偏差为2 Å或更小的构象。“旋转异构体”方法将允许把BCL::Conf集成到各自的计算生物学程序中,如Rosetta。

图形摘要

使用从晶体学结构数据库中导出的显式片段构象进行构象采样。数据库中的分子被分解为片段,最可能的构象/旋转异构体用于对感兴趣分子的相应子结构进行采样。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869a/4607025/2e50b2cdd6d7/13321_2015_95_Figa_HTML.jpg

相似文献

1
BCL::Conf: small molecule conformational sampling using a knowledge based rotamer library.
J Cheminform. 2015 Sep 30;7:47. doi: 10.1186/s13321-015-0095-1. eCollection 2015.
2
BCL::Conf: Improved Open-Source Knowledge-Based Conformation Sampling Using the Crystallography Open Database.
J Chem Inf Model. 2021 Jan 25;61(1):189-201. doi: 10.1021/acs.jcim.0c01140. Epub 2020 Dec 22.
3
Better Informed Distance Geometry: Using What We Know To Improve Conformation Generation.
J Chem Inf Model. 2015 Dec 28;55(12):2562-74. doi: 10.1021/acs.jcim.5b00654. Epub 2015 Nov 30.
4
Toward the Accuracy and Speed of Protein Side-Chain Packing: A Systematic Study on Rotamer Libraries.
J Chem Inf Model. 2020 Jan 27;60(1):410-420. doi: 10.1021/acs.jcim.9b00812. Epub 2019 Dec 31.
5
Advantages of fine-grained side chain conformer libraries.
Protein Eng. 2003 Dec;16(12):963-9. doi: 10.1093/protein/gzg143.
6
Comprehensive Assessment of Torsional Strain in Crystal Structures of Small Molecules and Protein-Ligand Complexes using ab Initio Calculations.
J Chem Inf Model. 2019 Oct 28;59(10):4195-4208. doi: 10.1021/acs.jcim.9b00373. Epub 2019 Oct 16.
7
Efficient conformational ensemble generation of protein-bound peptides.
J Cheminform. 2017 Nov 22;9(1):59. doi: 10.1186/s13321-017-0246-7.
8
A protein-dependent side-chain rotamer library.
BMC Bioinformatics. 2011 Dec 14;12 Suppl 14(Suppl 14):S10. doi: 10.1186/1471-2105-12-S14-S10.
9
IRECS: a new algorithm for the selection of most probable ensembles of side-chain conformations in protein models.
Protein Sci. 2007 Jul;16(7):1294-307. doi: 10.1110/ps.062658307. Epub 2007 Jun 13.

引用本文的文献

2
Luminescent Properties and Cytotoxic Activity of 2-phenylbenzoxazole Fluorosulfate Derivatives.
Int J Mol Sci. 2025 Jul 27;26(15):7261. doi: 10.3390/ijms26157261.
3
Tricyclic Isatin Derivatives as Anti-Inflammatory Compounds with High Kinase Binding Affinity.
Molecules. 2025 Jul 10;30(14):2914. doi: 10.3390/molecules30142914.
5
Similar Binding Mode of a 5-Sulfonylthiouracil Derivative Antagonist at Chemerin Receptors CMKLR1 and GPR1.
J Med Chem. 2025 Jun 12;68(11):11149-11173. doi: 10.1021/acs.jmedchem.5c00135. Epub 2025 May 16.
6
De novo design of ATPase based on a blueprint optimized for harboring the P-loop motif.
Protein Sci. 2025 Jun;34(6):e70132. doi: 10.1002/pro.70132.
7
Maltodextrin transport in the extremely thermophilic, lignocellulose degrading bacterium (f. ).
J Bacteriol. 2025 May 22;207(5):e0040124. doi: 10.1128/jb.00401-24. Epub 2025 Apr 30.
8
Patulin Detoxification by Evolutionarily Divergent Reductases of ATCC 621.
J Agric Food Chem. 2025 Mar 19;73(11):6842-6853. doi: 10.1021/acs.jafc.4c12572. Epub 2025 Mar 11.
9
Manipulating the molecular specificity of transcriptional biosensors for tryptophan metabolites and analogs.
Cell Rep Phys Sci. 2024 Oct 16;5(10). doi: 10.1016/j.xcrp.2024.102211. Epub 2024 Sep 16.

本文引用的文献

1
Computational methods in drug discovery.
Pharmacol Rev. 2013 Dec 31;66(1):334-95. doi: 10.1124/pr.112.007336. Print 2014.
2
CONFECT: conformations from an expert collection of torsion patterns.
ChemMedChem. 2013 Oct;8(10):1690-700. doi: 10.1002/cmdc.201300242. Epub 2013 Aug 8.
3
Freely available conformer generation methods: how good are they?
J Chem Inf Model. 2012 May 25;52(5):1146-58. doi: 10.1021/ci2004658. Epub 2012 Apr 19.
5
Confab - Systematic generation of diverse low-energy conformers.
J Cheminform. 2011 Mar 16;3:8. doi: 10.1186/1758-2946-3-8.
8
ConfGen: a conformational search method for efficient generation of bioactive conformers.
J Chem Inf Model. 2010 Apr 26;50(4):534-46. doi: 10.1021/ci100015j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验