Buch Michael H C, Liaci A Manuel, O'Hara Samantha D, Garcea Robert L, Neu Ursula, Stehle Thilo
Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
Department of Molecular, Cellular, and Developmental Biology, and the BioFrontiers Institute, University of Colorado, Boulder, Colorado, United States of America.
PLoS Pathog. 2015 Oct 16;11(10):e1005104. doi: 10.1371/journal.ppat.1005104. eCollection 2015 Oct.
Murine polyomavirus (MuPyV) causes tumors of various origins in newborn mice and hamsters. Infection is initiated by attachment of the virus to ganglioside receptors at the cell surface. Single amino acid exchanges in the receptor-binding pocket of the major capsid protein VP1 are known to drastically alter tumorigenicity and spread in closely related MuPyV strains. The virus represents a rare example of differential receptor recognition directly influencing viral pathogenicity, although the factors underlying these differences remain unclear. We performed structural and functional analyses of three MuPyV strains with strikingly different pathogenicities: the low-tumorigenicity strain RA, the high-pathogenicity strain PTA, and the rapidly growing, lethal laboratory isolate strain LID. Using ganglioside deficient mouse embryo fibroblasts, we show that addition of specific gangliosides restores infectability for all strains, and we uncover a complex relationship between virus attachment and infection. We identify a new infectious ganglioside receptor that carries an additional linear [α-2,8]-linked sialic acid. Crystal structures of all three strains complexed with representative oligosaccharides from the three main pathways of ganglioside biosynthesis provide the molecular basis of receptor recognition. All strains bind to a range of sialylated glycans featuring the central [α-2,3]-linked sialic acid present in the established receptors GD1a and GT1b, but the presence of additional sialic acids modulates binding. An extra [α-2,8]-linked sialic acid engages a protein pocket that is conserved among the three strains, while another, [α-2,6]-linked branching sialic acid lies near the strain-defining amino acids but can be accommodated by all strains. By comparing electron density of the oligosaccharides within the binding pockets at various concentrations, we show that the [α-2,8]-linked sialic acid increases the strength of binding. Moreover, the amino acid exchanges have subtle effects on their affinity for the validated receptor GD1a. Our results indicate that both receptor specificity and affinity influence MuPyV pathogenesis.
小鼠多瘤病毒(MuPyV)可在新生小鼠和仓鼠中引发多种起源的肿瘤。病毒通过附着于细胞表面的神经节苷脂受体来启动感染。已知主要衣壳蛋白VP1的受体结合口袋中的单个氨基酸交换会显著改变密切相关的MuPyV毒株的致瘤性和传播能力。该病毒是直接影响病毒致病性的差异受体识别的罕见例子,尽管这些差异背后的因素仍不清楚。我们对三种致病性截然不同的MuPyV毒株进行了结构和功能分析:低致瘤性毒株RA、高致病性毒株PTA以及快速生长的致死性实验室分离毒株LID。使用缺乏神经节苷脂的小鼠胚胎成纤维细胞,我们发现添加特定的神经节苷脂可恢复所有毒株的感染性,并且我们揭示了病毒附着与感染之间的复杂关系。我们鉴定出一种新的感染性神经节苷脂受体,其带有额外的线性[α-2,8]连接的唾液酸。三种毒株与来自神经节苷脂生物合成三个主要途径的代表性寡糖形成的复合物的晶体结构提供了受体识别的分子基础。所有毒株都与一系列具有已确定受体GD1a和GT1b中存在的中心[α-2,3]连接唾液酸的唾液酸化聚糖结合,但额外唾液酸的存在会调节结合。一个额外的[α-2,8]连接唾液酸与三种毒株中保守的一个蛋白口袋结合,而另一个[α-2,6]连接的分支唾液酸位于毒株特异性氨基酸附近,但所有毒株都可以容纳。通过比较不同浓度下结合口袋内寡糖的电子密度,我们表明[α-2,8]连接的唾液酸增加了结合强度。此外,氨基酸交换对它们与已验证受体GD1a的亲和力有微妙影响。我们的结果表明,受体特异性和亲和力都影响MuPyV的发病机制。