Suppr超能文献

生成式机器学习产生能够准确表征细胞内代谢状态的动力学模型。

Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states.

作者信息

Choudhury Subham, Narayanan Bharath, Moret Michael, Hatzimanikatis Vassily, Miskovic Ljubisa

机构信息

Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Present Address: Department of Oncology, University of Cambridge, Cambridge, UK.

出版信息

Nat Catal. 2024;7(10):1086-1098. doi: 10.1038/s41929-024-01220-6. Epub 2024 Aug 30.

Abstract

Generating large omics datasets has become routine for gaining insights into cellular processes, yet deciphering these datasets to determine metabolic states remains challenging. Kinetic models can help integrate omics data by explicitly linking metabolite concentrations, metabolic fluxes and enzyme levels. Nevertheless, determining the kinetic parameters that underlie cellular physiology poses notable obstacles to the widespread use of these mathematical representations of metabolism. Here we present RENAISSANCE, a generative machine learning framework for efficiently parameterizing large-scale kinetic models with dynamic properties matching experimental observations. Through seamless integration of diverse omics data and other relevant information, including extracellular medium composition, physicochemical data and expertise of domain specialists, RENAISSANCE accurately characterizes intracellular metabolic states in . It also estimates missing kinetic parameters and reconciles them with sparse experimental data, substantially reducing parameter uncertainty and improving accuracy. This framework will be valuable for researchers studying metabolic variations involving changes in metabolite and enzyme levels and enzyme activity in health and biotechnology.

摘要

生成大型组学数据集已成为深入了解细胞过程的常规操作,但解读这些数据集以确定代谢状态仍然具有挑战性。动力学模型可以通过明确连接代谢物浓度、代谢通量和酶水平来帮助整合组学数据。然而,确定细胞生理学基础的动力学参数对这些代谢数学表示的广泛应用构成了显著障碍。在这里,我们展示了RENAISSANCE,这是一个生成式机器学习框架,用于有效地参数化具有与实验观察结果相匹配的动态特性的大规模动力学模型。通过无缝整合各种组学数据和其他相关信息,包括细胞外培养基成分、物理化学数据和领域专家的专业知识,RENAISSANCE准确地表征了细胞内的代谢状态。它还估计缺失的动力学参数,并将它们与稀疏的实验数据进行协调,大幅降低参数不确定性并提高准确性。该框架对于研究健康和生物技术中涉及代谢物和酶水平变化以及酶活性的代谢变化的研究人员将具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d51/11499278/0fd57ee4bd3f/41929_2024_1220_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验