Suppr超能文献

多层FitzHugh-Nagumo网络中短记忆形成的图灵不稳定性机制。

Turing instability mechanism of short-memory formation in multilayer FitzHugh-Nagumo network.

作者信息

Wang Junjie, Shen Jianwei

机构信息

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, China.

School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, China.

出版信息

Front Psychiatry. 2023 Mar 27;14:1083015. doi: 10.3389/fpsyt.2023.1083015. eCollection 2023.

Abstract

INTRODUCTION

The study of brain function has been favored by scientists, but the mechanism of short-term memory formation has yet to be precise.

RESEARCH PROBLEM

Since the formation of short-term memories depends on neuronal activity, we try to explain the mechanism from the neuron level in this paper.

RESEARCH CONTENTS AND METHODS

Due to the modular structures of the brain, we analyze the pattern properties of the FitzHugh-Nagumo model (FHN) on a multilayer network (coupled by a random network). The conditions of short-term memory formation in the multilayer FHN model are obtained. Then the time delay is introduced to more closely match patterns of brain activity. The properties of periodic solutions are obtained by the central manifold theorem.

CONCLUSION

When the diffusion coeffcient, noise intensity , and network connection probability reach a specific range, the brain forms a relatively vague memory. It is found that network and time delay can induce complex cluster dynamics. And the synchrony increases with the increase of . That is, short-term memory becomes clearer.

摘要

引言

脑功能的研究一直受到科学家们的青睐,但短期记忆形成的机制尚未明确。

研究问题

由于短期记忆的形成依赖于神经元活动,本文我们试图从神经元层面解释其机制。

研究内容与方法

鉴于大脑的模块化结构,我们分析了多层网络(由随机网络耦合)上的菲茨休 - 纳古莫模型(FHN)的模式特性。得到了多层FHN模型中短期记忆形成的条件。然后引入时间延迟以更紧密地匹配大脑活动模式。通过中心流形定理获得周期解的性质。

结论

当扩散系数、噪声强度和网络连接概率达到特定范围时,大脑形成相对模糊的记忆。发现网络和时间延迟可诱导复杂的簇动力学。并且同步性随着[此处原文缺失某个变量的描述,可能有误]的增加而增加。即短期记忆变得更清晰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7252/10083418/0a87479ec24b/fpsyt-14-1083015-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验