Hortal Enrique, Planelles Daniel, Resquin Francisco, Climent José M, Azorín José M, Pons José L
Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Av. de la Universidad, S/N, Elche, 03202, Spain.
Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain.
J Neuroeng Rehabil. 2015 Oct 17;12:92. doi: 10.1186/s12984-015-0082-9.
As a consequence of the increase of cerebro-vascular accidents, the number of people suffering from motor disabilities is raising. Exoskeletons, Functional Electrical Stimulation (FES) devices and Brain-Machine Interfaces (BMIs) could be combined for rehabilitation purposes in order to improve therapy outcomes.
In this work, a system based on a hybrid upper limb exoskeleton is used for neurological rehabilitation. Reaching movements are supported by the passive exoskeleton ArmeoSpring and FES. The movement execution is triggered by an EEG-based BMI. The BMI uses two different methods to interact with the exoskeleton from the user's brain activity. The first method relies on motor imagery tasks classification, whilst the second one is based on movement intention detection.
Three healthy users and five patients with neurological conditions participated in the experiments to verify the usability of the system. Using the BMI based on motor imagery, healthy volunteers obtained an average accuracy of 82.9 ± 14.5 %, and patients obtained an accuracy of 65.3 ± 9.0 %, with a low False Positives rate (FP) (19.2 ± 10.4 % and 15.0 ± 8.4 %, respectively). On the other hand, by using the BMI based on detecting the arm movement intention, the average accuracy was 76.7 ± 13.2 % for healthy users and 71.6 ± 15.8 % for patients, with 28.7 ± 19.9 % and 21.2 ± 13.3 % of FP rate (healthy users and patients, respectively).
The accuracy of the results shows that the combined use of a hybrid upper limb exoskeleton and a BMI could be used for rehabilitation therapies. The advantage of this system is that the user is an active part of the rehabilitation procedure. The next step will be to verify what are the clinical benefits for the patients using this new rehabilitation procedure.
由于脑血管意外事件增多,患有运动障碍的人数正在上升。外骨骼、功能性电刺激(FES)设备和脑机接口(BMI)可结合用于康复目的,以改善治疗效果。
在这项工作中,基于混合上肢外骨骼的系统用于神经康复。伸展运动由被动外骨骼ArmeoSpring和FES提供支持。运动执行由基于脑电图的BMI触发。BMI使用两种不同方法根据用户大脑活动与外骨骼交互。第一种方法依赖于运动想象任务分类,而第二种方法基于运动意图检测。
三名健康用户和五名患有神经疾病的患者参与实验以验证该系统的可用性。使用基于运动想象的BMI,健康志愿者的平均准确率为82.9±14.5%,患者的准确率为65.3±9.0%,误报率较低(分别为19.2±10.4%和15.0±8.4%)。另一方面,通过使用基于检测手臂运动意图的BMI,健康用户的平均准确率为76.7±13.2%,患者为71.6±15.8%,误报率分别为28.7±19.9%和21.2±13.3%(分别为健康用户和患者)。
结果的准确性表明,混合上肢外骨骼和BMI的联合使用可用于康复治疗。该系统的优点是用户是康复过程的积极参与者。下一步将是验证使用这种新的康复程序对患者有哪些临床益处。