Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Grupo de Diseño y Formulación de Medicamentos, Cosméticos y Afines (DYFOMECO), Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Sci Total Environ. 2016 Jan 15;541:1431-1438. doi: 10.1016/j.scitotenv.2015.10.029. Epub 2015 Nov 11.
Synthetic pharmaceutical effluents loaded with the β-lactam antibiotic oxacillin were treated using advanced oxidation processes (the photo-Fenton system and TiO2 photocatalysis) and chloride mediated electrochemical oxidation (with Ti/IrO2 anodes). Combinations of the antibiotic with excipients (mannitol or tartaric acid), an active ingredient (calcium carbonate, i.e. bicarbonate ions due to the pH) and a cleaning agent (sodium lauryl ether sulfate) were considered. Additionally, urban wastewater that had undergone biological treatment was doped with oxacillin and treated with the tested systems. The evolution of antimicrobial activity was monitored as a parameter of processes efficiency. Although the two advanced oxidation processes (AOPs) differ only in the way they produce OH, marked differences were observed between them. There were also differences between the AOPs and the electrochemical system. Interestingly, each additive had a different effect on each treatment. For water loaded with mannitol, electrochemical treatment was the most suitable option because the additive did not significantly affect the efficiency of the system. Due to the formation of a complex with Fe(3+), tartaric acid accelerated the elimination of antibiotic activity during the photo-Fenton process. For TiO2 photocatalysis, the presence of bicarbonate ions contributed to antibiotic activity elimination through the possible formation of carbonate and bicarbonate radicals. Sodium lauryl ether sulfate negatively affected all of the processes. However, due to the higher selectivity of HOCl compared with OH, electrochemical oxidation showed the least inhibited efficiency. For the urban wastewater doped with oxacillin, TiO2 photocatalysis was the most efficient process. These results will help select the most suitable technology for the treatment of water polluted with β-lactam antibiotics.
用高级氧化工艺(光芬顿系统和 TiO2 光催化)和氯化物介导的电化学氧化(使用 Ti/IrO2 阳极)处理负载有β-内酰胺类抗生素苯唑西林的合成制药废水。考虑了抗生素与赋形剂(甘露醇或酒石酸)、活性成分(碳酸钙,即由于 pH 值而产生的碳酸氢根离子)和清洁剂(十二烷基醚硫酸钠)的组合。此外,还向经过生物处理的城市废水中添加了苯唑西林,并使用测试系统对其进行了处理。将抗菌活性的演变作为过程效率的参数进行监测。尽管两种高级氧化工艺(AOP)仅在产生 OH 的方式上有所不同,但它们之间仍观察到明显的差异。AOP 与电化学系统之间也存在差异。有趣的是,每种添加剂对每种处理都有不同的影响。对于负载甘露醇的水,电化学处理是最合适的选择,因为添加剂不会显著影响系统的效率。由于与 Fe(3+) 形成配合物,酒石酸在光芬顿过程中加速了抗生素活性的消除。对于 TiO2 光催化,碳酸氢根离子的存在通过可能形成的碳酸盐和碳酸氢盐自由基有助于消除抗生素活性。十二烷基醚硫酸钠对所有过程都有负面影响。然而,由于 HOCl 比 OH 具有更高的选择性,电化学氧化显示出受抑制效率最低。对于添加了苯唑西林的城市废水,TiO2 光催化是最有效的工艺。这些结果将有助于选择最适合处理β-内酰胺类抗生素污染水的技术。