Suppr超能文献

通过电化学氧化、TiO光催化和光芬顿法去除抗生素氯唑西林:降解途径分析及水基质对抗菌活性消除的影响

Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity.

作者信息

Serna-Galvis Efraim A, Giraldo-Aguirre Ana L, Silva-Agredo Javier, Flórez-Acosta Oscar A, Torres-Palma Ricardo A

机构信息

Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.

Grupo de Diseño y Formulación de Medicamentos, Cosméticos y Afines (DYFOMECO), Facultad de Química Farmacéutica, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.

出版信息

Environ Sci Pollut Res Int. 2017 Mar;24(7):6339-6352. doi: 10.1007/s11356-016-6257-5. Epub 2016 Feb 26.

Abstract

This study evaluates the treatment of the antibiotic cloxacillin (CLX) in water by means of electrochemical oxidation, TiO photocatalysis, and the photo-Fenton system. The three treatments completely removed cloxacillin and eliminated the residual antimicrobial activity from synthetic pharmaceutical wastewater containing the antibiotic, commercial excipients, and inorganic ions. However, significant differences in the degradation routes were found. In the photo-Fenton process, the hydroxyl radical was involved in the antibiotic removal, while in the TiO photocatalysis process, the action of both the holes and the adsorbed hydroxyl radicals degraded the pollutant. In the electrochemical treatment (using a Ti/IrO anode in sodium chloride as supporting electrolyte), oxidation via HClO played the main role in the removal of CLX. The analysis of initial by-products showed five different mechanistic pathways: oxidation of the thioether group, opening of the central β-lactam ring, breakdown of the secondary amide, hydroxylation of the aromatic ring, and decarboxylation. All the oxidation processes exhibited the three first pathways. Moreover, the aromatic ring hydroxylation was found in both photochemical treatments, while the decarboxylation of the pollutant was only observed in the TiO photocatalysis process. As a consequence of the degradation routes and mechanistic pathways, the elimination of organic carbon was different. After 480 and 240 min, the TiO photocatalysis and photo-Fenton processes achieved ∼45 and ∼15 % of mineralization, respectively. During the electrochemical treatment, 100 % of the organic carbon remained even after the antibiotic was treated four times the time needed to degrade it. In contrast, in all processes, a natural matrix (mineral water) did not considerably inhibit pollutant elimination. However, the presence of glucose in the water significantly affected the degradation of CLX by means of TiO photocatalysis.

摘要

本研究评估了通过电化学氧化、TiO光催化和光芬顿体系处理水中抗生素氯唑西林(CLX)的效果。这三种处理方法能完全去除氯唑西林,并消除含抗生素、商业辅料和无机离子的合成制药废水中的残留抗菌活性。然而,发现降解途径存在显著差异。在光芬顿过程中,羟基自由基参与抗生素的去除,而在TiO光催化过程中,空穴和吸附的羟基自由基共同作用降解污染物。在电化学处理中(以氯化钠为支持电解质,使用Ti/IrO阳极),通过HClO进行的氧化在CLX的去除中起主要作用。对初始副产物的分析显示了五种不同的机理途径:硫醚基团的氧化、中心β-内酰胺环的开环、仲酰胺的分解、芳环的羟基化和脱羧。所有氧化过程都呈现出前三种途径。此外,在两种光化学处理中都发现了芳环羟基化,而污染物的脱羧仅在TiO光催化过程中观察到。由于降解途径和机理途径的不同,有机碳的消除情况也不同。480分钟和240分钟后,TiO光催化和光芬顿过程分别实现了约45%和约15%的矿化。在电化学处理过程中,即使抗生素处理时间是降解所需时间的四倍,仍有100%的有机碳残留。相比之下,在所有过程中,天然基质(矿泉水)并未显著抑制污染物的去除。然而,水中葡萄糖的存在显著影响了通过TiO光催化对CLX的降解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验