Tayoury Marwa, Chari Abdelwahed, Aqil Mohamed, Idrissi Adil Sghiouri, El Bendali Ayoub, Alami Jones, Tamraoui Youssef, Dahbi Mouad
Materials Science, Energy, and Nano-engineering Department, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco.
Nanomaterials (Basel). 2024 Jul 16;14(14):1204. doi: 10.3390/nano14141204.
In advancing sodium-ion battery technology, we introduce a novel application of NaNiZr(PO) with a NASICON structure as an anode material. This research unveils, for the first time, its exceptional ability to maintain high specific capacity and unprecedented cycle stability under extreme current densities up to 1000 mA·g, within a low voltage window of 0.01-2.5 V. The core of our findings lies in the material's remarkable capacity retention and stability, which is a leap forward in addressing long-standing challenges in energy storage. Through cutting-edge in situ/operando X-ray diffraction analysis, we provide a perspective on the structural evolution of NaNiZr(PO) during operation, offering deep insights into the mechanisms that underpin its superior performance.
在推进钠离子电池技术的过程中,我们引入了一种具有NASICON结构的新型NaNiZr(PO)作为阳极材料的应用。这项研究首次揭示了其在高达1000 mA·g的极端电流密度下,在0.01 - 2.5 V的低电压窗口内保持高比容量和前所未有的循环稳定性的卓越能力。我们研究结果的核心在于该材料出色的容量保持率和稳定性,这在解决储能领域长期存在的挑战方面向前迈出了一大步。通过前沿的原位/操作X射线衍射分析,我们对NaNiZr(PO)在运行过程中的结构演变提供了一个视角,深入洞察了支撑其卓越性能的机制。