Suppr超能文献

通过对NaV(PO)进行表面晶体修饰以形成中间相NaV(PO),实现高速率钠存储。

Surface Crystal Modification of Na V (PO ) to Cast Intermediate Na V (PO ) Phase toward High-Rate Sodium Storage.

作者信息

Zhang Hui, Wang Lei, Ma Linlin, Liu Yahui, Hou Baoxiu, Shang Ningzhao, Zhang Shuaihua, Song Jianjun, Chen Shuangqiang, Zhao Xiaoxian

机构信息

Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China.

Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.

出版信息

Adv Sci (Weinh). 2024 Jan;11(3):e2306168. doi: 10.1002/advs.202306168. Epub 2023 Nov 23.

Abstract

The two-phase reaction of Na V (PO ) - Na V (PO ) in Na V (PO ) (NVP) is hindered by low electronic and ionic conductivity. To address this problem, a surface-N-doped NVP encapsulating by N-doped carbon nanocage (N-NVP/N-CN) is rationally constructed, wherein the nitrogen is doped in both the surface crystal structure of NVP and carbon layer. The surface crystal modification decreases the energy barrier of Na diffusion from bulk to electrolyte, enhances intrinsic electronic conductivity, and releases lattice stress. Meanwhile, the porous architecture provides more active sites for redox reactions and shortens the diffusion path of ion. Furthermore, the new interphase of Na V (PO ) is detected by in situ XRD and clarified by density functional theory (DFT) calculation with a lower energy barrier during the fast reversible electrochemical three-phase reaction of Na V (PO ) - Na V (PO ) - Na V (PO ) . Therefore, as cathode of sodium-ion battery, the N-NVP/N-CN exhibited specific capacities of 119.7 and 75.3 mAh g at 1 C and even 200 C. Amazingly, high capacities of 89.0, 86.2, and 84.6 mAh g are achieved after overlong 10000 cycles at 20, 40, and 50 C, respectively. This approach provides a new idea for surface crystal modification to cast intermediate Na V (PO ) phase for achieving excellent cycling stability and rate capability.

摘要

NaV(PO₄)₃ - Na₂V(PO₄)₃在Na₃V(PO₄)₃(NVP)中的两相反应受到低电子和离子电导率的阻碍。为了解决这个问题,合理构建了一种由氮掺杂碳纳米笼封装的表面氮掺杂NVP(N-NVP/N-CN),其中氮同时掺杂在NVP的表面晶体结构和碳层中。表面晶体改性降低了Na从本体扩散到电解质的能垒,提高了本征电子电导率,并释放了晶格应力。同时,多孔结构为氧化还原反应提供了更多活性位点,并缩短了离子扩散路径。此外,通过原位XRD检测到了Na₃V(PO₄)₃的新中间相,并通过密度泛函理论(DFT)计算进行了阐明,在Na₃V(PO₄)₃ - Na₂V(PO₄)₃ - NaV(PO₄)₃的快速可逆电化学三相反应过程中,其能垒较低。因此,作为钠离子电池的正极,N-NVP/N-CN在1C和200C时的比容量分别为119.7和75.3 mAh g。令人惊讶的是,在20、40和50C下经过长达10000次循环后,分别实现了89.0、86.2和84.6 mAh g的高容量。这种方法为表面晶体改性以铸造中间Na₂V(PO₄)₃相提供了新思路,从而实现优异的循环稳定性和倍率性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e18/10797425/6432e9e19ea3/ADVS-11-2306168-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验