Hu Chenhui, Sepulcre Jorge, Johnson Keith A, Fakhri Georges E, Lu Yue M, Li Quanzheng
Center for Advanced Medical Imaging Sciences, NMMI, Radiology, Massachusetts General Hospital, Boston, MA, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
NMMI, Radiology, Massachusetts General Hospital, Boston, MA, USA.
Neuroimage. 2016 Jan 15;125:587-600. doi: 10.1016/j.neuroimage.2015.10.026. Epub 2015 Oct 19.
Motivated by recent progress in signal processing on graphs, we have developed a matched signal detection (MSD) theory for signals with intrinsic structures described by weighted graphs. First, we regard graph Laplacian eigenvalues as frequencies of graph-signals and assume that the signal is in a subspace spanned by the first few graph Laplacian eigenvectors associated with lower eigenvalues. The conventional matched subspace detector can be applied to this case. Furthermore, we study signals that may not merely live in a subspace. Concretely, we consider signals with bounded variation on graphs and more general signals that are randomly drawn from a prior distribution. For bounded variation signals, the test is a weighted energy detector. For the random signals, the test statistic is the difference of signal variations on associated graphs, if a degenerate Gaussian distribution specified by the graph Laplacian is adopted. We evaluate the effectiveness of the MSD on graphs both with simulated and real data sets. Specifically, we apply MSD to the brain imaging data classification problem of Alzheimer's disease (AD) based on two independent data sets: 1) positron emission tomography data with Pittsburgh compound-B tracer of 30 AD and 40 normal control (NC) subjects, and 2) resting-state functional magnetic resonance imaging (R-fMRI) data of 30 early mild cognitive impairment and 20 NC subjects. Our results demonstrate that the MSD approach is able to outperform the traditional methods and help detect AD at an early stage, probably due to the success of exploiting the manifold structure of the data.
受图信号处理领域近期进展的启发,我们针对具有加权图描述的内在结构的信号,开发了一种匹配信号检测(MSD)理论。首先,我们将图拉普拉斯特征值视为图信号的频率,并假设信号位于由与较低特征值相关联的前几个图拉普拉斯特征向量所张成的子空间中。传统的匹配子空间检测器可应用于这种情况。此外,我们研究了可能不仅仅存在于子空间中的信号。具体而言,我们考虑在图上具有有界变差的信号以及从先验分布中随机抽取的更一般的信号。对于有界变差信号,检验是一种加权能量检测器。对于随机信号,如果采用由图拉普拉斯指定的退化高斯分布,则检验统计量是相关图上信号变差的差异。我们使用模拟数据集和真实数据集评估了图上MSD的有效性。具体来说,我们基于两个独立的数据集将MSD应用于阿尔茨海默病(AD)的脑成像数据分类问题:1)30名AD患者和40名正常对照(NC)受试者的匹兹堡化合物B示踪剂正电子发射断层扫描数据,以及2)30名早期轻度认知障碍患者和20名NC受试者的静息态功能磁共振成像(R-fMRI)数据。我们的结果表明,MSD方法能够优于传统方法,并有助于在早期阶段检测出AD,这可能是由于成功利用了数据的流形结构。