Suppr超能文献

图上的匹配信号检测:理论及在脑网络分类中的应用

Matched signal detection on graphs: theory and application to brain network classification.

作者信息

Hu Chenhui, Cheng Lin, Sepulcre Jorge, El Fakhri Georges, Lu Yue M, Lu Yue M

出版信息

Inf Process Med Imaging. 2013;23:1-12. doi: 10.1007/978-3-642-38868-2_1.

Abstract

We develop a matched signal detection (MSD) theory for signals with an intrinsic structure described by a weighted graph. Hypothesis tests are formulated under different signal models. In the simplest scenario, we assume that the signal is deterministic with noise in a subspace spanned by a subset of eigenvectors of the graph Laplacian. The conventional matched subspace detection can be easily extended to this case. Furthermore, we study signals with certain level of smoothness. The test turns out to be a weighted energy detector, when the noise variance is negligible. More generally, we presume that the signal follows a prior distribution, which could be learnt from training data. The test statistic is then the difference of signal variations on associated graph structures, if an Ising model is adopted. Effectiveness of the MSD on graph is evaluated both by simulation and real data. We apply it to the network classification problem of Alzheimer's disease (AD) particularly. The preliminary results demonstrate that our approach is able to exploit the sub-manifold structure of the data, and therefore achieve a better performance than the traditional principle component analysis (PCA).

摘要

我们针对具有由加权图描述的内在结构的信号,开发了一种匹配信号检测(MSD)理论。在不同的信号模型下制定假设检验。在最简单的情况下,我们假设信号是确定性的,噪声存在于由图拉普拉斯算子的特征向量子集所张成的子空间中。传统的匹配子空间检测可以很容易地扩展到这种情况。此外,我们研究具有一定平滑度水平的信号。当噪声方差可忽略不计时,该检验结果是一个加权能量检测器。更一般地,我们假定信号遵循先验分布,该先验分布可以从训练数据中学习得到。如果采用伊辛模型,那么检验统计量就是相关图结构上信号变化的差异。通过仿真和实际数据评估了MSD在图上的有效性。我们特别将其应用于阿尔茨海默病(AD)的网络分类问题。初步结果表明,我们的方法能够利用数据的子流形结构,因此比传统的主成分分析(PCA)具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验