Bianconi Fortunato, Baldelli Elisa, Ludovini Vienna, Petricoin Emanuel F, Crinò Lucio, Valigi Paolo
Dept of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Via Gambuli, 1, Perugia, 06156, IT.
Center for Applied Proteomics and Molecular Medicine George Mason University, 10900 University Blvd, Manassas, 20110, USA.
BMC Syst Biol. 2015 Oct 19;9:70. doi: 10.1186/s12918-015-0216-5.
The study of cancer therapy is a key issue in the field of oncology research and the development of target therapies is one of the main problems currently under investigation. This is particularly relevant in different types of tumor where traditional chemotherapy approaches often fail, such as lung cancer.
We started from the general definition of robustness introduced by Kitano and applied it to the analysis of dynamical biochemical networks, proposing a new algorithm based on moment independent analysis of input/output uncertainty. The framework utilizes novel computational methods which enable evaluating the model fragility with respect to quantitative performance measures and parameters such as reaction rate constants and initial conditions. The algorithm generates a small subset of parameters that can be used to act on complex networks and to obtain the desired behaviors. We have applied the proposed framework to the EGFR-IGF1R signal transduction network, a crucial pathway in lung cancer, as an example of Cancer Systems Biology application in drug discovery. Furthermore, we have tested our framework on a pulse generator network as an example of Synthetic Biology application, thus proving the suitability of our methodology to the characterization of the input/output synthetic circuits.
The achieved results are of immediate practical application in computational biology, and while we demonstrate their use in two specific examples, they can in fact be used to study a wider class of biological systems.
癌症治疗研究是肿瘤学研究领域的关键问题,而靶向治疗的发展是当前研究的主要问题之一。这在不同类型的肿瘤中尤为重要,比如肺癌,传统化疗方法在这类肿瘤中常常失效。
我们从北野所提出的稳健性的一般定义出发,并将其应用于动态生化网络分析,提出了一种基于输入/输出不确定性矩独立分析的新算法。该框架利用新颖的计算方法,能够针对定量性能指标以及诸如反应速率常数和初始条件等参数来评估模型的脆弱性。该算法生成一小部分参数,可用于作用于复杂网络并获得期望的行为。我们已将所提出的框架应用于表皮生长因子受体 - 胰岛素样生长因子1受体(EGFR - IGF1R)信号转导网络,这是肺癌中的一条关键通路,作为癌症系统生物学在药物发现中的应用示例。此外,我们已在一个脉冲发生器网络上测试了我们的框架,作为合成生物学应用的示例,从而证明了我们的方法对于输入/输出合成电路表征的适用性。
所取得的成果在计算生物学中具有直接的实际应用价值,虽然我们在两个具体例子中展示了它们的用途,但实际上它们可用于研究更广泛的一类生物系统。