Suppr超能文献

条件稳健校准在计算系统生物学常微分方程模型中的应用:两种抽样策略的比较

Application of conditional robust calibration to ordinary differential equations models in computational systems biology: a comparison of two sampling strategies.

作者信息

Bianconi Fortunato, Antonini Chiara, Tomassoni Lorenzo, Valigi Paolo

机构信息

Independent Researcher, Belvedere 44, 06036 Montefalco, Perugia, Italy.

Department of Engineering, University of Perugia, G. Duranti 95, 06132 Perugia, Italy.

出版信息

IET Syst Biol. 2020 Jun;14(3):107-119. doi: 10.1049/iet-syb.2018.5091.

Abstract

Mathematical modelling is a widely used technique for describing the temporal behaviour of biological systems. One of the most challenging topics in computational systems biology is the calibration of non-linear models; i.e. the estimation of their unknown parameters. The state-of-the-art methods in this field are the frequentist and Bayesian approaches. For both of them, the performance and accuracy of results greatly depend on the sampling technique employed. Here, the authors test a novel Bayesian procedure for parameter estimation, called conditional robust calibration (CRC), comparing two different sampling techniques: uniform and logarithmic Latin hypercube sampling. CRC is an iterative algorithm based on parameter space sampling and on the estimation of parameter density functions. They apply CRC with both sampling strategies to the three ordinary differential equations (ODEs) models of increasing complexity. They obtain a more precise and reliable solution through logarithmically spaced samples.

摘要

数学建模是一种广泛用于描述生物系统时间行为的技术。计算系统生物学中最具挑战性的主题之一是非线性模型的校准,即对其未知参数的估计。该领域的最新方法是频率主义方法和贝叶斯方法。对于这两种方法,结果的性能和准确性在很大程度上取决于所采用的采样技术。在此,作者测试了一种用于参数估计的新型贝叶斯程序,称为条件稳健校准(CRC),比较了两种不同的采样技术:均匀采样和对数拉丁超立方采样。CRC是一种基于参数空间采样和参数密度函数估计的迭代算法。他们将采用两种采样策略的CRC应用于三个复杂度不断增加的常微分方程(ODE)模型。通过对数间隔采样,他们获得了更精确和可靠的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7812/8687221/7b3860b1f85a/SYB2-14-107-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验