Suppr超能文献

动态定量性状基因座分析在植物表型数据中的应用。

Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data.

机构信息

Biocenter Oulu, Oulu, Finland; Department of Mathematical Sciences and Department of Biology, University of Oulu, 90014 Oulu, Finland.

Biocenter Oulu, Oulu, Finland; Department of Mathematical Sciences and Department of Biology, University of Oulu, 90014 Oulu, Finland.

出版信息

Trends Plant Sci. 2015 Dec;20(12):822-833. doi: 10.1016/j.tplants.2015.08.012. Epub 2015 Oct 5.

Abstract

Advanced platforms have recently become available for automatic and systematic quantification of plant growth and development. These new techniques can efficiently produce multiple measurements of phenotypes over time, and introduce time as an extra dimension to quantitative trait locus (QTL) studies. Functional mapping utilizes a class of statistical models for identifying QTLs associated with the growth characteristics of interest. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. We review the current development of computationally efficient functional mapping methods which provide invaluable tools for analyzing large-scale timecourse data that are readily available in our post-genome era.

摘要

近年来,已经出现了一些高级平台,可用于自动和系统地量化植物的生长和发育。这些新技术可以有效地随时间产生多个表型测量值,并将时间作为数量性状位点 (QTL) 研究的一个额外维度。功能作图利用一类统计模型来识别与感兴趣的生长特征相关的 QTL。功能作图的一个主要优点是它整合了多个时间点的信息,因此可以提高 QTL 检测的统计能力。我们回顾了当前高效计算功能映射方法的发展,这些方法为分析我们后基因组时代大量现成的时间序列数据提供了非常有价值的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验