Jiang Dan, Wang Hongwei, Li Jiahan, Wu Yang, Fang Ming, Yang Runqing
Life Science College Heilongjiang Bayi Agricultural University, Daqing 163319, People's Republic of China.
Fishery Technical Extension Station, Beijing Daxing Animal Health Supervisory Commission, Beijing 102600, People's Republic of China.
Genomics. 2014 Dec;104(6 Pt B):472-6. doi: 10.1016/j.ygeno.2014.10.002. Epub 2014 Oct 12.
Common quantitative trait locus (QTL) mapping methods fail to analyze survival traits of skewed normal distributions. As a result, some mapping methods for survival traits have been proposed based on survival analysis. Under a single QTL model, however, those methods perform poorly in detecting multiple QTLs and provide biased estimates of QTL parameters. For sparse oversaturated model used to map survival time loci, the least absolute shrinkage and selection operator (LASSO) for Cox regression model can be employed to efficiently shrink most of genetic effects to zero. Then, a few non-zero genetic effects are re-estimated and statistically tested using the standard maximum Cox partial likelihood method. Simulation shows that the proposed method has higher statistic power for QTL detection than that of the LASSO for logarithmic linear model or the interval mapping based on Cox model, although it somewhat underestimates QTL effects. Especially, computational speed of the method is very fast. An application of this method illustrates mapping main effect and interacting QTLs for heading time in the North American Barley Genome Mapping Project.
常见的数量性状基因座(QTL)定位方法无法分析偏态正态分布的生存性状。因此,基于生存分析提出了一些生存性状的定位方法。然而,在单QTL模型下,这些方法在检测多个QTL时表现不佳,并且会提供有偏差的QTL参数估计。对于用于定位生存时间基因座的稀疏过饱和模型,可以采用Cox回归模型的最小绝对收缩和选择算子(LASSO),将大多数遗传效应有效地收缩至零。然后,使用标准的最大Cox偏似然方法重新估计少数非零遗传效应并进行统计检验。模拟表明,尽管该方法在一定程度上低估了QTL效应,但与对数线性模型的LASSO或基于Cox模型的区间定位相比,所提出的方法具有更高的QTL检测统计功效。特别是,该方法的计算速度非常快。该方法在北美大麦基因组定位项目中对头期的主效和互作QTL进行定位的应用中得到了体现。