Suppr超能文献

基于解耦算法和粒子群优化自抗扰控制的自主水下航行器姿态稳定控制

Attitude Stabilization Control of Autonomous Underwater Vehicle Based on Decoupling Algorithm and PSO-ADRC.

作者信息

Wu Xiong, Jiang Du, Yun Juntong, Liu Xin, Sun Ying, Tao Bo, Tong Xiliang, Xu Manman, Kong Jianyi, Liu Ying, Zhao Guojun, Fang Zifan

机构信息

Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan, China.

Research Center for Biomimetic Robot and Intelligent Measurement and Control, Wuhan University of Science and Technology, Wuhan, China.

出版信息

Front Bioeng Biotechnol. 2022 Feb 28;10:843020. doi: 10.3389/fbioe.2022.843020. eCollection 2022.

Abstract

Autonomous Underwater Vehicle are widely used in industries, such as marine resource exploitation and fish farming, but they are often subject to a large amount of interference which cause poor control stability, while performing their tasks. A decoupling control algorithm is proposed and A single control volume-single attitude angle model is constructed for the problem of severe coupling in the control system of attitude of six degrees of freedom Autonomous Underwater Vehicle. Aiming at the problem of complex Active Disturbance Rejection Control (ADRC) adjustment relying on manual experience, the PSO-ADRC algorithm is proposed to realize the automatic adjustment of its parameters, which improves the anti-interference ability and control accuracy of Autonomous Underwater Vehicle in dynamic environment. The anti-interference ability and control accuracy of the method were verified through experiments.

摘要

自主水下航行器在海洋资源开发和养鱼等行业中得到广泛应用,但在执行任务时,它们经常受到大量干扰,导致控制稳定性较差。针对六自由度自主水下航行器姿态控制系统中严重耦合的问题,提出了一种解耦控制算法,并构建了单控制量-单姿态角模型。针对主动干扰抑制控制(ADRC)调整复杂且依赖人工经验的问题,提出了粒子群优化-主动干扰抑制控制(PSO-ADRC)算法来实现其参数的自动调整,提高了自主水下航行器在动态环境中的抗干扰能力和控制精度。通过实验验证了该方法的抗干扰能力和控制精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ae4/8918931/f675fe8e44c9/fbioe-10-843020-g001.jpg

相似文献

1
Attitude Stabilization Control of Autonomous Underwater Vehicle Based on Decoupling Algorithm and PSO-ADRC.
Front Bioeng Biotechnol. 2022 Feb 28;10:843020. doi: 10.3389/fbioe.2022.843020. eCollection 2022.
3
Anti-disturbance control design of Exoskeleton Knee robotic system for rehabilitative care.
Heliyon. 2024 Mar 31;10(9):e28911. doi: 10.1016/j.heliyon.2024.e28911. eCollection 2024 May 15.
4
Efficient Asynchronous Federated Learning for AUV Swarm.
Sensors (Basel). 2022 Nov 11;22(22):8727. doi: 10.3390/s22228727.
5
A PSO-enhanced Gauss pseudospectral method to solve trajectory planning for autonomous underwater vehicles.
Math Biosci Eng. 2023 May 8;20(7):11713-11731. doi: 10.3934/mbe.2023521.
7
Design of an active front steering system for a vehicle using an active disturbance rejection control method.
Sci Prog. 2020 Jan-Mar;103(1):36850419883565. doi: 10.1177/0036850419883565. Epub 2019 Nov 1.
8
A GA-based parameters tuning method for an ADRC controller of ISP for aerial remote sensing applications.
ISA Trans. 2018 Oct;81:318-328. doi: 10.1016/j.isatra.2018.08.001. Epub 2018 Aug 10.
9
Dynamic Target Tracking Control of Autonomous Underwater Vehicle Based on Trajectory Prediction.
IEEE Trans Cybern. 2023 Mar;53(3):1968-1981. doi: 10.1109/TCYB.2022.3189688. Epub 2023 Feb 15.

引用本文的文献

1
Multi-Objective Location and Mapping Based on Deep Learning and Visual Slam.
Sensors (Basel). 2022 Oct 6;22(19):7576. doi: 10.3390/s22197576.
2
Multi-network collaborative lift-drag ratio prediction and airfoil optimization based on residual network and generative adversarial network.
Front Bioeng Biotechnol. 2022 Sep 6;10:927064. doi: 10.3389/fbioe.2022.927064. eCollection 2022.
3
Vibration Signal Analysis Based on Spherical Error Compensation.
Front Bioeng Biotechnol. 2022 Aug 19;10:950580. doi: 10.3389/fbioe.2022.950580. eCollection 2022.
4
Real-Time Target Detection Method Based on Lightweight Convolutional Neural Network.
Front Bioeng Biotechnol. 2022 Aug 16;10:861286. doi: 10.3389/fbioe.2022.861286. eCollection 2022.
5
Neural-Network-Based Model-Free Calibration Method for Stereo Fisheye Camera.
Front Bioeng Biotechnol. 2022 Jul 14;10:955233. doi: 10.3389/fbioe.2022.955233. eCollection 2022.
6
Surface Defect Segmentation Algorithm of Steel Plate Based on Geometric Median Filter Pruning.
Front Bioeng Biotechnol. 2022 Jul 1;10:945248. doi: 10.3389/fbioe.2022.945248. eCollection 2022.
7
Path Planning Optimization of Intelligent Vehicle Based on Improved Genetic and Ant Colony Hybrid Algorithm.
Front Bioeng Biotechnol. 2022 Jul 1;10:905983. doi: 10.3389/fbioe.2022.905983. eCollection 2022.
8
A Transendothelial Leukocyte Transmigration Model Based on Computational Fluid Dynamics and BP Neural Network.
Front Bioeng Biotechnol. 2022 Jun 21;10:881797. doi: 10.3389/fbioe.2022.881797. eCollection 2022.
9
Multi-Objective Optimization Design of Ladle Refractory Lining Based on Genetic Algorithm.
Front Bioeng Biotechnol. 2022 Jun 15;10:900655. doi: 10.3389/fbioe.2022.900655. eCollection 2022.
10
Improved Multi-Stream Convolutional Block Attention Module for sEMG-Based Gesture Recognition.
Front Bioeng Biotechnol. 2022 Jun 7;10:909023. doi: 10.3389/fbioe.2022.909023. eCollection 2022.

本文引用的文献

1
Real-Time Target Detection Method Based on Lightweight Convolutional Neural Network.
Front Bioeng Biotechnol. 2022 Aug 16;10:861286. doi: 10.3389/fbioe.2022.861286. eCollection 2022.
2
A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm.
Front Bioeng Biotechnol. 2022 May 19;10:832829. doi: 10.3389/fbioe.2022.832829. eCollection 2022.
3
Low-Illumination Image Enhancement Algorithm Based on Improved Multi-Scale Retinex and ABC Algorithm Optimization.
Front Bioeng Biotechnol. 2022 Apr 11;10:865820. doi: 10.3389/fbioe.2022.865820. eCollection 2022.
4
Time Optimal Trajectory Planing Based on Improved Sparrow Search Algorithm.
Front Bioeng Biotechnol. 2022 Mar 22;10:852408. doi: 10.3389/fbioe.2022.852408. eCollection 2022.
5
Photoelastic Stress Field Recovery Using Deep Convolutional Neural Network.
Front Bioeng Biotechnol. 2022 Mar 21;10:818112. doi: 10.3389/fbioe.2022.818112. eCollection 2022.
6
Self-Tuning Control of Manipulator Positioning Based on Fuzzy PID and PSO Algorithm.
Front Bioeng Biotechnol. 2022 Feb 11;9:817723. doi: 10.3389/fbioe.2021.817723. eCollection 2021.
7
Genetic-Based Optimization of 3D Burch-Schneider Cage With Functionally Graded Lattice Material.
Front Bioeng Biotechnol. 2022 Jan 26;10:819005. doi: 10.3389/fbioe.2022.819005. eCollection 2022.
8
Intelligent Detection of Steel Defects Based on Improved Split Attention Networks.
Front Bioeng Biotechnol. 2022 Jan 13;9:810876. doi: 10.3389/fbioe.2021.810876. eCollection 2021.
9
Genetic Algorithm-Based Trajectory Optimization for Digital Twin Robots.
Front Bioeng Biotechnol. 2022 Jan 10;9:793782. doi: 10.3389/fbioe.2021.793782. eCollection 2021.
10
Behavior Strategy Analysis Based on the Multi-Stakeholder Game under the Plastic Straw Ban in China.
Int J Environ Res Public Health. 2021 Dec 2;18(23):12729. doi: 10.3390/ijerph182312729.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验