Suppr超能文献

模拟悬停虻的基于视觉的俯仰、升力和速度控制策略。

Modeling visual-based pitch, lift and speed control strategies in hoverflies.

机构信息

Aix Marseille Univ, CNRS, ISM, Marseille, France.

出版信息

PLoS Comput Biol. 2018 Jan 23;14(1):e1005894. doi: 10.1371/journal.pcbi.1005894. eCollection 2018 Jan.

Abstract

To avoid crashing onto the floor, a free falling fly needs to trigger its wingbeats quickly and control the orientation of its thrust accurately and swiftly to stabilize its pitch and hence its speed. Behavioural data have suggested that the vertical optic flow produced by the fall and crossing the visual field plays a key role in this anti-crash response. Free fall behavior analyses have also suggested that flying insect may not rely on graviception to stabilize their flight. Based on these two assumptions, we have developed a model which accounts for hoverflies´ position and pitch orientation recorded in 3D with a fast stereo camera during experimental free falls. Our dynamic model shows that optic flow-based control combined with closed-loop control of the pitch suffice to stabilize the flight properly. In addition, our model sheds a new light on the visual-based feedback control of fly´s pitch, lift and thrust. Since graviceptive cues are possibly not used by flying insects, the use of a vertical reference to control the pitch is discussed, based on the results obtained on a complete dynamic model of a virtual fly falling in a textured corridor. This model would provide a useful tool for understanding more clearly how insects may or not estimate their absolute attitude.

摘要

为了避免坠落到地板上,自由落体的苍蝇需要快速触发其翅膀拍打,并准确、迅速地控制其推力的方向,以稳定其俯仰角,从而稳定其速度。行为数据表明,由坠落和穿过视野产生的垂直光流在这种防撞反应中起着关键作用。自由落体行为分析还表明,飞行昆虫可能不依赖重觉来稳定它们的飞行。基于这两个假设,我们开发了一个模型,该模型解释了在实验性自由落体过程中,使用快速立体相机记录的悬停蝇在 3D 中的位置和俯仰方向。我们的动力学模型表明,基于光流的控制和俯仰的闭环控制足以正确稳定飞行。此外,我们的模型为蝇的俯仰、升力和推力的基于视觉的反馈控制提供了新的视角。由于重觉线索可能不被飞行昆虫使用,因此根据在纹理化走廊中坠落的虚拟蝇的完整动力学模型中获得的结果,讨论了使用垂直参考来控制俯仰的问题。这个模型将为更清楚地理解昆虫如何或不估计其绝对姿态提供一个有用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e10/5780187/dcd2237b9726/pcbi.1005894.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验