Suppr超能文献

从突触局部作用到一氧化氮的容积传递。

From synaptically localized to volume transmission by nitric oxide.

作者信息

Garthwaite John

机构信息

Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK.

出版信息

J Physiol. 2016 Jan 1;594(1):9-18. doi: 10.1113/JP270297. Epub 2015 Nov 18.

Abstract

Nitric oxide (NO) functions widely as a transmitter/diffusible second messenger in the central nervous system, exerting physiological effects in target cells by binding to specialized guanylyl cyclase-coupled receptors, resulting in cGMP generation. Despite having many context-dependent physiological roles and being implicated in numerous disease states, there has been a lack of clarity about the ways that NO operates at the cellular and subcellular levels. Recently, several approaches have been used to try to gain a more concrete, quantitative understanding of this unique signalling pathway. These approaches have included analysing the kinetics of NO receptor function, real-time imaging of cellular NO signal transduction in target cells, and the use of ultrasensitive detector cells to record NO as it is being generated from native sources in brain tissue. The current picture is that, when formed in a synapse, NO is likely to act only very locally, probably mostly within the confines of that synapse, and to exist only in picomolar concentrations. Nevertheless, closely neighbouring synapses may also be within reach, raising the possibility of synaptic crosstalk. By engaging its enzyme-coupled receptors, the low NO concentrations are able to stimulate physiological (submicromolar) increases in cGMP concentration in an activity-dependent manner. When many NO-emitting neurones or synapses are active simultaneously in a tissue region, NO can act more like a volume transmitter to influence, and perhaps coordinate, the behaviour of cells within that region, irrespective of their identity and anatomical connectivity.

摘要

一氧化氮(NO)在中枢神经系统中广泛作为一种递质/可扩散的第二信使发挥作用,通过与特殊的鸟苷酸环化酶偶联受体结合在靶细胞中发挥生理效应,从而导致环磷酸鸟苷(cGMP)的生成。尽管NO具有许多依赖于背景的生理作用,并与多种疾病状态有关,但对于NO在细胞和亚细胞水平上的作用方式仍缺乏清晰的认识。最近,人们采用了几种方法来试图对这一独特的信号通路有更具体、定量的理解。这些方法包括分析NO受体功能的动力学、对靶细胞中细胞NO信号转导进行实时成像,以及使用超灵敏检测细胞来记录脑组织中内源性来源产生的NO。目前的情况是,当在突触中形成时,NO可能仅在非常局部的范围内起作用,可能主要在该突触的范围内,并且仅以皮摩尔浓度存在。然而,紧邻的突触也可能受到影响,这增加了突触间相互作用的可能性。通过与酶偶联受体结合,低浓度的NO能够以活动依赖的方式刺激cGMP浓度在生理水平(亚微摩尔)上增加。当组织区域中有许多释放NO的神经元或突触同时活跃时,NO可以更像一种容积性递质那样发挥作用,以影响并可能协调该区域内细胞的行为,而不论它们的身份和解剖学连接情况如何。

相似文献

1
From synaptically localized to volume transmission by nitric oxide.
J Physiol. 2016 Jan 1;594(1):9-18. doi: 10.1113/JP270297. Epub 2015 Nov 18.
3
Nitric oxide as a multimodal brain transmitter.
Brain Neurosci Adv. 2018 Dec 4;2:2398212818810683. doi: 10.1177/2398212818810683. eCollection 2018 Jan-Dec.
4
NO/cGMP-dependent modulation of synaptic transmission.
Handb Exp Pharmacol. 2008(184):529-60. doi: 10.1007/978-3-540-74805-2_16.
5
The alpha2beta1 isoform of guanylyl cyclase mediates plasma membrane localized nitric oxide signalling.
Cell Signal. 2007 Oct;19(10):2183-93. doi: 10.1016/j.cellsig.2007.06.017. Epub 2007 Jun 29.
6
Sources and targets of nitric oxide signalling in insect nervous systems.
Cell Tissue Res. 2001 Feb;303(2):137-46. doi: 10.1007/s004410000321.
7
PACAP induces plasticity at autonomic synapses by nAChR-dependent NOS1 activation and AKAP-mediated PKA targeting.
Mol Cell Neurosci. 2014 Nov;63:1-12. doi: 10.1016/j.mcn.2014.08.007. Epub 2014 Aug 25.
8
Traumatic injury of the spinal cord and nitric oxide.
Prog Brain Res. 2007;161:171-83. doi: 10.1016/S0079-6123(06)61011-X.
9
NO as a multimodal transmitter in the brain: discovery and current status.
Br J Pharmacol. 2019 Jan;176(2):197-211. doi: 10.1111/bph.14532. Epub 2018 Dec 5.
10
Signalling pathway of nitric oxide in synaptic GABA release in the rat paraventricular nucleus.
J Physiol. 2004 Jan 1;554(Pt 1):100-10. doi: 10.1113/jphysiol.2003.053371.

引用本文的文献

1
Modeling nitric oxide diffusion and plasticity modulation in cerebellar learning.
APL Bioeng. 2025 Jun 12;9(2):026125. doi: 10.1063/5.0250953. eCollection 2025 Jun.
4
Synaptic mechanisms underlying the elevated sympathetic outflow in fructose-induced hypertension.
Front Physiol. 2024 Mar 4;15:1365594. doi: 10.3389/fphys.2024.1365594. eCollection 2024.
5
Function and regulation of nitric oxide signaling in Drosophila.
Mol Cells. 2024 Jan;47(1):100006. doi: 10.1016/j.mocell.2023.12.004. Epub 2023 Dec 20.
8
Emerging Roles of Endothelial Nitric Oxide in Preservation of Cognitive Health.
Stroke. 2023 Mar;54(3):686-696. doi: 10.1161/STROKEAHA.122.041444. Epub 2023 Feb 27.

本文引用的文献

1
Visualization of cyclic nucleotide dynamics in neurons.
Front Cell Neurosci. 2014 Dec 4;8:395. doi: 10.3389/fncel.2014.00395. eCollection 2014.
2
Nitric oxide targets oligodendrocytes and promotes their morphological differentiation.
Glia. 2015 Mar;63(3):383-99. doi: 10.1002/glia.22759. Epub 2014 Oct 18.
3
Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction.
J Clin Invest. 2014 Jun;124(6):2550-9. doi: 10.1172/JCI65928. Epub 2014 May 8.
4
Improved genetically-encoded, FlincG-type fluorescent biosensors for neural cGMP imaging.
Front Mol Neurosci. 2013 Sep 24;6:26. doi: 10.3389/fnmol.2013.00026. eCollection 2013.
5
Cellular targets of nitric oxide in the hippocampus.
PLoS One. 2013;8(2):e57292. doi: 10.1371/journal.pone.0057292. Epub 2013 Feb 25.
6
Three-dimensional spatial distribution of synapses in the neocortex: a dual-beam electron microscopy study.
Cereb Cortex. 2014 Jun;24(6):1579-88. doi: 10.1093/cercor/bht018. Epub 2013 Jan 30.
7
A "sliding scale rule" for selectivity among NO, CO, and O₂ by heme protein sensors.
Biochemistry. 2012 Jan 10;51(1):172-86. doi: 10.1021/bi2015629. Epub 2011 Dec 13.
8
Picomolar nitric oxide signals from central neurons recorded using ultrasensitive detector cells.
J Biol Chem. 2011 Dec 16;286(50):43172-81. doi: 10.1074/jbc.M111.289777. Epub 2011 Oct 20.
9
NMDA receptors in hippocampal GABAergic synapses and their role in nitric oxide signaling.
J Neurosci. 2011 Apr 20;31(16):5893-904. doi: 10.1523/JNEUROSCI.5938-10.2011.
10
Exquisite sensitivity to subsecond, picomolar nitric oxide transients conferred on cells by guanylyl cyclase-coupled receptors.
Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22060-5. doi: 10.1073/pnas.1013147107. Epub 2010 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验