State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, China.
Phys Chem Chem Phys. 2015 Nov 28;17(44):29844-53. doi: 10.1039/c5cp03700j. Epub 2015 Oct 21.
Thermoelectrics interconvert heat to electricity and are of great interest in waste heat recovery, solid-state cooling and so on. Here we assessed the potential of SnS2 and SnSe2 as thermoelectric materials at the temperature gradient from 300 to 800 K. Reflecting the crystal structure, the transport coefficients are highly anisotropic between a and c directions, in particular for the electrical conductivity. The preferred direction for both materials is the a direction in TE application. Most strikingly, when 800 K is reached, SnS2 can show a peak power factor (PF) of 15.50 μW cm(-1) K(-2) along the a direction, while a relatively low value (11.72 μW cm(-1) K(-2)) is obtained in the same direction of SnSe2. These values are comparable to those observed in thermoelectrics such as SnSe and SnS. At 300 K, the minimum lattice thermal conductivity (κmin) along the a direction is estimated to be about 0.67 and 0.55 W m(-1) K(-1) for SnS2 and SnSe2, respectively, even lower than the measured lattice thermal conductivity of Bi2Te3 (1.28 W m(-1) K(-1) at 300 K). The reasonable PF and κmin suggest that both SnS2 and SnSe2 are potential thermoelectric materials. Indeed, the estimated peak ZT can approach 0.88 for SnSe2 and a higher value of 0.96 for SnS2 along the a direction at a carrier concentration of 1.94 × 10(19) (SnSe2) vs. 2.87 × 10(19) cm(-3) (SnS2). The best ZT values in SnX2 (X = S, Se) are comparable to that in Bi2Te3 (0.8), a typical thermoelectric material. We hope that this theoretical investigation will provide useful information for further experimental and theoretical studies on optimizing the thermoelectric properties of SnX2 materials.
热电材料可将热能转化为电能,在余热回收、固态冷却等领域具有重要应用前景。本工作评估了 SnS2 和 SnSe2 在 300-800 K 温度梯度下作为热电材料的潜力。反映晶体结构,输运系数在 a 和 c 方向之间具有高度各向异性,特别是电导率。对于这两种材料,在 TE 应用中,优选方向均为 a 方向。最引人注目的是,当达到 800 K 时,SnS2 在 a 方向上可展现出 15.50 μW cm(-1) K(-2)的峰值功率因子(PF),而 SnSe2 在相同方向上则获得相对较低的 PF 值(11.72 μW cm(-1) K(-2))。这些值与 SnSe 和 SnS 等热电材料观察到的值相当。在 300 K 时,SnS2 和 SnSe2 在 a 方向上的最小晶格热导率(κmin)估计分别约为 0.67 和 0.55 W m(-1) K(-1),甚至低于 Bi2Te3 在 300 K 时的测量晶格热导率(1.28 W m(-1) K(-1))。合理的 PF 和 κmin 表明 SnS2 和 SnSe2 均是潜在的热电材料。事实上,在载流子浓度为 1.94×10(19)(SnSe2)与 2.87×10(19) cm(-3)(SnS2)时,SnSe2 沿 a 方向的估计峰值 ZT 可分别接近 0.88,SnS2 可达到更高的 0.96。SnX2(X = S、Se)中最佳的 ZT 值与典型的热电材料 Bi2Te3(0.8)相当。我们希望本理论研究将为进一步优化 SnX2 材料的热电性能的实验和理论研究提供有用信息。