Shafique Aamir, Shin Young-Han
Department of Physics, University of Ulsan, Ulsan, 44610, Republic of Korea.
Sci Rep. 2017 Mar 30;7(1):506. doi: 10.1038/s41598-017-00598-7.
We explore the thermoelectric and phonon transport properties of two-dimensional monochalcogenides (SnSe, SnS, GeSe, and GeS) using density functional theory combined with Boltzmann transport theory. We studied the electronic structures, Seebeck coefficients, electrical conductivities, lattice thermal conductivities, and figures of merit of these two-dimensional materials, which showed that the thermoelectric performance of monolayer of these compounds is improved in comparison compared to their bulk phases. High figures of merit (ZT) are predicted for SnSe (ZT = 2.63, 2.46), SnS (ZT = 1.75, 1.88), GeSe (ZT = 1.99, 1.73), and GeS (ZT = 1.85, 1.29) at 700 K along armchair and zigzag directions, respectively. Phonon dispersion calculations confirm the dynamical stability of these compounds. The calculated lattice thermal conductivities are low while the electrical conductivities and Seebeck coefficients are high. Thus, the properties of the monolayers show high potential toward thermoelectric applications.
我们运用密度泛函理论结合玻尔兹曼输运理论,探究了二维单硫属化物(SnSe、SnS、GeSe和GeS)的热电和声子输运性质。我们研究了这些二维材料的电子结构、塞贝克系数、电导率、晶格热导率以及优值,结果表明,与它们的体相相比,这些化合物单层的热电性能有所改善。预测在700K时,沿扶手椅方向和锯齿方向,SnSe(ZT = 2.63,2.46)、SnS(ZT = 1.75,1.88)、GeSe(ZT = 1.99,1.73)和GeS(ZT = 1.85,1.29)具有较高的优值。声子色散计算证实了这些化合物的动力学稳定性。计算得到的晶格热导率较低,而电导率和塞贝克系数较高。因此,这些单层材料的性质在热电应用方面显示出巨大潜力。