Suppr超能文献

相似文献

1
Immunometabolism within the tuberculosis granuloma: amino acids, hypoxia, and cellular respiration.
Semin Immunopathol. 2016 Mar;38(2):139-52. doi: 10.1007/s00281-015-0534-0. Epub 2015 Oct 21.
2
Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):E4024-32. doi: 10.1073/pnas.1408839111. Epub 2014 Sep 8.
3
Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review.
Semin Immunopathol. 2016 Mar;38(2):167-83. doi: 10.1007/s00281-015-0537-x. Epub 2015 Oct 28.
4
Targeting Molecular Inflammatory Pathways in Granuloma as Host-Directed Therapies for Tuberculosis.
Front Immunol. 2021 Oct 20;12:733853. doi: 10.3389/fimmu.2021.733853. eCollection 2021.
5
A bug's life in the granuloma.
Semin Immunopathol. 2016 Mar;38(2):213-20. doi: 10.1007/s00281-015-0533-1. Epub 2015 Nov 17.
6
Host-Pathogen Interaction as a Novel Target for Host-Directed Therapies in Tuberculosis.
Front Immunol. 2020 Jul 21;11:1553. doi: 10.3389/fimmu.2020.01553. eCollection 2020.
7
Spatial transcriptomic sequencing reveals immune microenvironment features of granulomas in lung and omentum.
Theranostics. 2024 Sep 23;14(16):6185-6201. doi: 10.7150/thno.99038. eCollection 2024.

引用本文的文献

1
Tertiary Lymphoid Structures in Tuberculosis: Persistence, Protection, and Pathology.
Immunol Rev. 2025 Aug;333(1):e70055. doi: 10.1111/imr.70055.
2
4
Model systems to study infections: an overview of scientific potential and impediments.
Front Cell Infect Microbiol. 2025 May 8;15:1572547. doi: 10.3389/fcimb.2025.1572547. eCollection 2025.
5
Where lung cancer and tuberculosis intersect: recent advances.
Front Immunol. 2025 Apr 2;16:1561719. doi: 10.3389/fimmu.2025.1561719. eCollection 2025.
6
Microenvironments of tuberculous granuloma: advances and opportunities for therapy.
Front Immunol. 2025 Mar 24;16:1575133. doi: 10.3389/fimmu.2025.1575133. eCollection 2025.
7
Fatty acid metabolism in neutrophils promotes lung damage and bacterial replication during tuberculosis.
PLoS Pathog. 2024 Oct 4;20(10):e1012188. doi: 10.1371/journal.ppat.1012188. eCollection 2024 Oct.
8
LILRB1-HLA-G axis defines a checkpoint driving natural killer cell exhaustion in tuberculosis.
EMBO Mol Med. 2024 Aug;16(8):1755-1790. doi: 10.1038/s44321-024-00106-1. Epub 2024 Jul 19.
9
Why cells need iron: a compendium of iron utilisation.
Trends Endocrinol Metab. 2024 Dec;35(12):1026-1049. doi: 10.1016/j.tem.2024.04.015. Epub 2024 May 17.
10
In silico agent-based modeling approach to characterize multiple in vitro tuberculosis infection models.
PLoS One. 2024 Mar 22;19(3):e0299107. doi: 10.1371/journal.pone.0299107. eCollection 2024.

本文引用的文献

1
The Cellular and Molecular Basis of Translational Immunometabolism.
Immunity. 2015 Sep 15;43(3):421-34. doi: 10.1016/j.immuni.2015.08.023.
2
Differential Requirements for L-Citrulline and L-Arginine during Antimycobacterial Macrophage Activity.
J Immunol. 2015 Oct 1;195(7):3293-300. doi: 10.4049/jimmunol.1500800. Epub 2015 Aug 26.
3
Anatomy of a discovery: m1 and m2 macrophages.
Front Immunol. 2015 May 5;6:212. doi: 10.3389/fimmu.2015.00212. eCollection 2015.
4
Role for NOD2 in Mycobacterium tuberculosis-induced iNOS expression and NO production in human macrophages.
J Leukoc Biol. 2015 Jun;97(6):1111-9. doi: 10.1189/jlb.3A1114-557R. Epub 2015 Mar 23.
6
Advancing host-directed therapy for tuberculosis.
Nat Rev Immunol. 2015 Apr;15(4):255-63. doi: 10.1038/nri3813. Epub 2015 Mar 13.
7
Nitric oxide synthase in innate and adaptive immunity: an update.
Trends Immunol. 2015 Mar;36(3):161-78. doi: 10.1016/j.it.2015.01.003. Epub 2015 Feb 13.
10
Impaired T cell function in argininosuccinate synthetase deficiency.
J Leukoc Biol. 2015 Feb;97(2):273-8. doi: 10.1189/jlb.1AB0714-365R. Epub 2014 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验