Suppr超能文献

通过基于高级集成的异构极端学习机提高分类性能。

Improving Classification Performance through an Advanced Ensemble Based Heterogeneous Extreme Learning Machines.

作者信息

Abuassba Adnan O M, Zhang Dezheng, Luo Xiong, Shaheryar Ahmad, Ali Hazrat

机构信息

School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing 100083, China.

Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China.

出版信息

Comput Intell Neurosci. 2017;2017:3405463. doi: 10.1155/2017/3405463. Epub 2017 May 4.

Abstract

Extreme Learning Machine (ELM) is a fast-learning algorithm for a single-hidden layer feedforward neural network (SLFN). It often has good generalization performance. However, there are chances that it might overfit the training data due to having more hidden nodes than needed. To address the generalization performance, we use a heterogeneous ensemble approach. We propose an Advanced ELM Ensemble (AELME) for classification, which includes Regularized-ELM, -norm-optimized ELM (ELML2), and Kernel-ELM. The ensemble is constructed by training a randomly chosen ELM classifier on a subset of training data selected through random resampling. The proposed AELM-Ensemble is evolved by employing an objective function of increasing diversity and accuracy among the final ensemble. Finally, the class label of unseen data is predicted using majority vote approach. Splitting the training data into subsets and incorporation of heterogeneous ELM classifiers result in higher prediction accuracy, better generalization, and a lower number of base classifiers, as compared to other models (Adaboost, Bagging, Dynamic ELM ensemble, data splitting ELM ensemble, and ELM ensemble). The validity of AELME is confirmed through classification on several real-world benchmark datasets.

摘要

极限学习机(ELM)是一种用于单隐层前馈神经网络(SLFN)的快速学习算法。它通常具有良好的泛化性能。然而,由于隐藏节点数量超过所需数量,它有可能过度拟合训练数据。为了解决泛化性能问题,我们使用一种异构集成方法。我们提出了一种用于分类的高级ELM集成(AELME),它包括正则化ELM、L2范数优化的ELM(ELML2)和核ELM。该集成通过在通过随机重采样选择的训练数据子集上训练随机选择的ELM分类器来构建。所提出的AELM集成通过采用一个目标函数来进化,该目标函数可增加最终集成中的多样性和准确性。最后,使用多数投票方法预测未见数据的类别标签。与其他模型(Adaboost、Bagging、动态ELM集成、数据分割ELM集成和ELM集成)相比,将训练数据分割成子集并纳入异构ELM分类器可导致更高的预测准确性、更好的泛化能力以及更少的基分类器数量。通过在几个真实世界基准数据集上进行分类,证实了AELME的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be4e/5435980/b8f054c024ae/CIN2017-3405463.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验