Suppr超能文献

通过组织-水凝胶杂化体实现全身组织稳定化和选择性提取,用于高分辨率完整回路映射和表型分析。

Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping.

作者信息

Treweek Jennifer B, Chan Ken Y, Flytzanis Nicholas C, Yang Bin, Deverman Benjamin E, Greenbaum Alon, Lignell Antti, Xiao Cheng, Cai Long, Ladinsky Mark S, Bjorkman Pamela J, Fowlkes Charless C, Gradinaru Viviana

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.

出版信息

Nat Protoc. 2015 Nov;10(11):1860-1896. doi: 10.1038/nprot.2015.122. Epub 2015 Oct 22.

Abstract

To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1-2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks.

摘要

为便于对整个标本进行精细表型分析,我们在此描述了一套组织固定-包埋、去污剂清除和染色方案,这些方案可用于在1-2周内将切除的器官和整个生物体转化为光学透明样本,同时不损害其细胞结构或内源性荧光。PACT(被动透明技术)和PARS(原位灌注辅助剂释放)在选择性脂质提取过程中使用组织-水凝胶杂种来稳定组织生物分子,从而提高清除效率和样本完整性。此外,经PACT和PARS处理的组织杂种的大分子通透性支持免疫标记物在整个完整组织中的扩散,而RIMS(折射率匹配溶液)通过进一步减少已清除和未清除样本中的光散射,实现深度高分辨率成像。这些方法适用于难以成像的组织,如骨骼(PACT-deCAL),也适用于放大的单细胞可视化(ePACT)。总之,这些方案和溶液能够对完整生物网络中的亚细胞成分进行表型分析,并追踪细胞连接性。

相似文献

2
Single-cell phenotyping within transparent intact tissue through whole-body clearing.
Cell. 2014 Aug 14;158(4):945-958. doi: 10.1016/j.cell.2014.07.017. Epub 2014 Jul 31.
5
Phenotyping Intact Mouse Bones Using Bone CLARITY.
Methods Mol Biol. 2021;2230:217-230. doi: 10.1007/978-1-0716-1028-2_13.
6
Lectins for histochemical demonstration of glycans.
Histochem Cell Biol. 2011 Aug;136(2):117-30. doi: 10.1007/s00418-011-0848-5. Epub 2011 Jul 31.
7
Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods.
Breast Cancer Res. 2016 Dec 13;18(1):127. doi: 10.1186/s13058-016-0754-9.
8
A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue.
Prog Histochem Cytochem. 2016 Aug;51(2):9-23. doi: 10.1016/j.proghi.2016.04.001. Epub 2016 Apr 14.
9
Imaging cleared intact biological systems at a cellular level by 3DISCO.
J Vis Exp. 2014 Jul 7(89):51382. doi: 10.3791/51382.
10
ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue.
Development. 2013 Mar;140(6):1364-8. doi: 10.1242/dev.091844.

引用本文的文献

3
Rapid and efficient optical tissue clearing for volumetric imaging of the intact and injured spinal cord in mice.
Front Neurosci. 2025 Jun 13;19:1601360. doi: 10.3389/fnins.2025.1601360. eCollection 2025.
6
A novel workflow for multi-modal imaging of musculoskeletal tissues.
J Anat. 2025 May;246(5):724-731. doi: 10.1111/joa.14202. Epub 2025 Jan 17.
7
Transcriptional determinants of goal-directed learning and representational drift in the parahippocampal cortex.
Cell Rep. 2025 Jan 28;44(1):115175. doi: 10.1016/j.celrep.2024.115175. Epub 2025 Jan 9.
8
A multiwell plate approach to increase the sample throughput during tissue clearing.
Nat Protoc. 2025 Apr;20(4):967-988. doi: 10.1038/s41596-024-01080-1. Epub 2024 Dec 3.
10
High-Speed Clearing and High-Resolution Staining for Analysis of Various Markers for Neurons and Vessels.
Tissue Eng Regen Med. 2024 Oct;21(7):1037-1048. doi: 10.1007/s13770-024-00658-w. Epub 2024 Jul 2.

本文引用的文献

1
NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases.
Neuron. 2016 Jul 20;91(2):293-311. doi: 10.1016/j.neuron.2016.06.012. Epub 2016 Jun 30.
2
Optimization of CLARITY for Clearing Whole-Brain and Other Intact Organs.
eNeuro. 2015 May 25;2(3). doi: 10.1523/ENEURO.0022-15.2015. eCollection 2015 May-Jun.
3
neuTube 1.0: A New Design for Efficient Neuron Reconstruction Software Based on the SWC Format.
eNeuro. 2015 Jan 2;2(1). doi: 10.1523/ENEURO.0049-14.2014. eCollection 2015 Jan-Feb.
4
Temperature Effect on the Nanostructure of SDS Micelles in Water.
J Res Natl Inst Stand Technol. 2013 Apr 11;118:151-67. doi: 10.6028/jres.118.008. eCollection 2013.
5
Histological validation of high-resolution DTI in human post mortem tissue.
Front Neuroanat. 2015 Jul 23;9:98. doi: 10.3389/fnana.2015.00098. eCollection 2015.
7
Saturated Reconstruction of a Volume of Neocortex.
Cell. 2015 Jul 30;162(3):648-61. doi: 10.1016/j.cell.2015.06.054.
8
Genetically Encoded Spy Peptide Fusion System to Detect Plasma Membrane-Localized Proteins In Vivo.
Chem Biol. 2015 Aug 20;22(8):1108-21. doi: 10.1016/j.chembiol.2015.06.020. Epub 2015 Jul 23.
9
Clarifying Tissue Clearing.
Cell. 2015 Jul 16;162(2):246-257. doi: 10.1016/j.cell.2015.06.067.
10
BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images.
Neuron. 2015 Jul 15;87(2):252-6. doi: 10.1016/j.neuron.2015.06.036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验