Suppr超能文献

用于(扩展)边际拉施模型的吉布斯抽样器。

A Gibbs Sampler for the (Extended) Marginal Rasch Model.

作者信息

Maris Gunter, Bechger Timo, San Martin Ernesto

出版信息

Psychometrika. 2015 Dec;80(4):859-79. doi: 10.1007/s11336-015-9479-4.

Abstract

In their seminal work on characterizing the manifest probabilities of latent trait models, Cressie and Holland give a theoretically important characterization of the marginal Rasch model. Because their representation of the marginal Rasch model does not involve any latent trait, nor any specific distribution of a latent trait, it opens up the possibility for constructing a Markov chain - Monte Carlo method for Bayesian inference for the marginal Rasch model that does not rely on data augmentation. Such an approach would be highly efficient as its computational cost does not depend on the number of respondents, which makes it suitable for large-scale educational measurement. In this paper, such an approach will be developed and its operating characteristics illustrated with simulated data.

摘要

在他们关于刻画潜在特质模型的明显概率的开创性工作中,克雷斯和霍兰德给出了边际拉施模型在理论上重要的刻画。由于他们对边际拉施模型的表示不涉及任何潜在特质,也不涉及潜在特质的任何特定分布,这为构建一种用于边际拉施模型贝叶斯推断的马尔可夫链蒙特卡罗方法开辟了可能性,该方法不依赖于数据扩充。这样一种方法将非常高效,因为其计算成本不依赖于受访者的数量,这使其适用于大规模教育测量。在本文中,将开发这样一种方法并用模拟数据说明其操作特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a0/4644215/ae633fe6addf/11336_2015_9479_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验