Suppr超能文献

动态估计扩展边际 Rasch 模型及其在数学计算机自适应练习中的应用。

Dynamic estimation in the extended marginal Rasch model with an application to mathematical computer-adaptive practice.

机构信息

Utrecht University, the Netherlands.

ACTNext, Iowa City, Iowa, USA.

出版信息

Br J Math Stat Psychol. 2020 Feb;73(1):72-87. doi: 10.1111/bmsp.12157. Epub 2019 Mar 18.

Abstract

We introduce a general response model that allows for several simple restrictions, resulting in other models such as the extended Rasch model. For the extended Rasch model, a dynamic Bayesian estimation procedure is provided, which is able to deal with data sets that change over time, and possibly include many missing values. To ensure comparability over time, a data augmentation method is used, which provides an augmented person-by-item data matrix and reproduces the sufficient statistics of the complete data matrix. Hence, longitudinal comparisons can be easily made based on simple summaries, such as proportion correct, sum score, etc. As an illustration of the method, an example is provided using data from a computer-adaptive practice mathematical environment.

摘要

我们引入了一个通用的响应模型,该模型允许几个简单的限制,从而产生其他模型,如扩展的 RASCH 模型。对于扩展的 RASCH 模型,提供了一种动态贝叶斯估计程序,它能够处理随时间变化的数据集,并且可能包含许多缺失值。为了确保随时间的可比性,使用了一种数据增强方法,该方法提供了一个增强的人与项目数据矩阵,并复制了完整数据矩阵的充分统计量。因此,可以基于简单的摘要(例如正确比例、总和分数等)轻松进行纵向比较。作为该方法的说明,使用来自计算机自适应实践数学环境的数据提供了一个示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验