Suppr超能文献

基因组数据分析中促进健康公平的方法学机遇。

Methodological opportunities in genomic data analysis to advance health equity.

作者信息

Lehmann Brieuc, Bräuninger Leandra, Cho Yoonsu, Falck Fabian, Jayadeva Smera, Katell Michael, Nguyen Thuy, Perini Antonella, Tallman Sam, Mackintosh Maxine, Silver Matt, Kuchenbäcker Karoline, Leslie David, Chatterjee Nilanjan, Holmes Chris

机构信息

Department of Statistical Science, University College London, London, UK.

The Alan Turing Institute, London, UK.

出版信息

Nat Rev Genet. 2025 May 15. doi: 10.1038/s41576-025-00839-w.

Abstract

The causes and consequences of inequities in genomic research and medicine are complex and widespread. However, it is widely acknowledged that underrepresentation of diverse populations in human genetics research risks exacerbating existing health disparities. Efforts to improve diversity are ongoing, but an often-overlooked source of inequity is the choice of analytical methods used to process, analyse and interpret genomic data. This choice can influence all areas of genomic research, from genome-wide association studies and polygenic score development to variant prioritization and functional genomics. New statistical and machine learning techniques to understand, quantify and correct for the impact of biases in genomic data are emerging within the wider genomic research and genomic medicine ecosystems. At this crucial time point, it is important to clarify where improvements in methods and practices can, or cannot, have a role in improving equity in genomics. Here, we review existing approaches to promote equity and fairness in statistical analysis for genomics, and propose future methodological developments that are likely to yield the most impact for equity.

摘要

基因组研究与医学中的不公平现象,其原因和后果复杂且普遍。然而,人们普遍认识到,人类遗传学研究中不同群体代表性不足,有可能加剧现有的健康差距。增加多样性的工作正在进行中,但一个经常被忽视的不公平根源是用于处理、分析和解释基因组数据的分析方法的选择。这种选择会影响基因组研究的各个领域,从全基因组关联研究、多基因分数开发到变异优先级排序和功能基因组学。在更广泛的基因组研究和基因组医学生态系统中,正在涌现出用于理解、量化和校正基因组数据中偏差影响的新统计和机器学习技术。在这个关键时刻,明确方法和实践的改进在何处能够或不能对改善基因组学公平性发挥作用非常重要。在此,我们回顾了现有的促进基因组统计学分析公平性的方法,并提出了可能对公平性产生最大影响的未来方法学发展方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验