Kwak Il-Youp, Pan Wei
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA.
Bioinformatics. 2016 Apr 15;32(8):1178-84. doi: 10.1093/bioinformatics/btv719. Epub 2015 Dec 10.
Gene- and pathway-based analyses offer a useful alternative and complement to the usual single SNP-based analysis for GWAS. On the other hand, most existing gene- and pathway-based tests are not highly adaptive, and/or require the availability of individual-level genotype and phenotype data. It would be desirable to have highly adaptive tests applicable to summary statistics for single SNPs. This has become increasingly important given the popularity of large-scale meta-analyses of multiple GWASs and the practical availability of either single GWAS or meta-analyzed GWAS summary statistics for single SNPs.
We extend two adaptive tests for gene- and pathway-level association with a univariate trait to the case with GWAS summary statistics without individual-level genotype and phenotype data. We use the WTCCC GWAS data to evaluate and compare the proposed methods and several existing methods. We further illustrate their applications to a meta-analyzed dataset to identify genes and pathways associated with blood pressure, demonstrating the potential usefulness of the proposed methods. The methods are implemented in R package aSPU, freely and publicly available.
https://cran.r-project.org/web/packages/aSPU/ CONTACT: weip@biostat.umn.edu
Supplementary data are available at Bioinformatics online.
基于基因和通路的分析为全基因组关联研究(GWAS)中常用的基于单核苷酸多态性(SNP)的分析提供了一种有用的替代方法和补充。另一方面,大多数现有的基于基因和通路的检验适应性不强,和/或需要个体水平的基因型和表型数据。期望有适用于单SNP汇总统计量的高度适应性检验。鉴于多个GWAS大规模荟萃分析的普及以及单SNP的单个GWAS或荟萃分析的GWAS汇总统计量的实际可用性,这一点变得越来越重要。
我们将两种用于基因和通路水平与单变量性状关联的适应性检验扩展到无个体水平基因型和表型数据的GWAS汇总统计量的情况。我们使用WTCCC的GWAS数据来评估和比较所提出的方法以及几种现有方法。我们进一步说明它们在一个荟萃分析数据集上的应用,以识别与血压相关的基因和通路,证明所提出方法的潜在实用性。这些方法在R包aSPU中实现,可免费公开获取。
https://cran.r-project.org/web/packages/aSPU/
补充数据可在《生物信息学》在线获取。