Huang Yuegao, Coman Daniel, Hyder Fahmeed, Ali Meser M
Department of Neurology, Henry Ford Hospital , Detroit, Michigan 48202, United States.
Bioconjug Chem. 2015 Dec 16;26(12):2315-23. doi: 10.1021/acs.bioconjchem.5b00568. Epub 2015 Nov 5.
Biosensor imaging of redundant deviation in shifts (BIRDS) is a molecular imaging platform for magnetic resonance that utilizes unique properties of low molecular weight paramagnetic monomers by detecting hyperfine-shifted nonexchangeable protons and transforming the chemical shift information to reflect its microenvironment (e.g., via temperature, pH, etc.). To optimize translational biosensing potential of BIRDS we examined if this detection scheme observed with monomers can be extended onto dendrimers, which are versatile and biocompatible macromolecules with modifiable surface for molecular imaging and drug delivery. Here we report on feasibility of paramagnetic dendrimers for BIRDS. The results show that BIRDS is resilient with paramagnetic dendrimers up to the fourth generation (i.e., G1-G4), where the model dendrimer and chelate were based on poly(amido amine) (PAMAM) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA(4-)) complexed with thulium ion (Tm(3+)). Temperature sensitivities of two prominent signals of Gn-PAMAM-(TmDOTA(-))x (where n = 1-4, x = 6-39) were comparable to that of prominent signals in TmDOTA(-). Transverse relaxation times of the coalesced nonexchangeable protons on Gn-PAMAM-(TmDOTA(-))x were relatively short to provide signal-to-noise ratio that was comparable to or better than that of TmDOTA(-). A fluorescent dye, rhodamine, was conjugated to a G2-PAMAM-(TmDOTA)12 to create a dual-modality nanosized contrast agent. BIRDS properties of the dendrimer were unaltered with rhodamine conjugation. Purposely designed paramagnetic dendrimers for BIRDS in conjunction with novel macromolecular surface modification for functional ligands/drugs could potentially be used for biologically compatible theranostic sensors.
位移冗余偏差的生物传感器成像(BIRDS)是一种用于磁共振的分子成像平台,它通过检测超精细位移的非交换质子并转换化学位移信息以反映其微环境(例如,通过温度、pH等)来利用低分子量顺磁性单体的独特性质。为了优化BIRDS的转化生物传感潜力,我们研究了单体的这种检测方案是否可以扩展到树枝状大分子上,树枝状大分子是具有可修饰表面用于分子成像和药物递送的多功能且生物相容性的大分子。在此,我们报告顺磁性树枝状大分子用于BIRDS的可行性。结果表明,BIRDS对于高达第四代(即G1 - G4)的顺磁性树枝状大分子具有适应性,其中模型树枝状大分子和螯合物基于聚(酰胺胺)(PAMAM)以及与铥离子(Tm(3+))络合的1,4,7,10 - 四氮杂环十二烷 - 1,4,7,10 - 四乙酸(DOTA(4 -))。Gn - PAMAM - (TmDOTA(-))x(其中n = 1 - 4,x = 6 - 39)的两个突出信号的温度敏感性与TmDOTA(-)中的突出信号相当。Gn - PAMAM - (TmDOTA(-))x上合并的非交换质子的横向弛豫时间相对较短,以提供与TmDOTA(-)相当或更好的信噪比。一种荧光染料罗丹明与G2 - PAMAM - (TmDOTA)12缀合,以创建一种双模态纳米级造影剂。树枝状大分子的BIRDS性质不会因罗丹明缀合而改变。特意设计的用于BIRDS的顺磁性树枝状大分子,结合用于功能性配体/药物的新型大分子表面修饰,可能潜在地用于生物相容性的治疗诊断传感器。