Suppr超能文献

评估和监测胶质母细胞瘤中的肿瘤内异质性:多模态成像进展如何?

Assessing and monitoring intratumor heterogeneity in glioblastoma: how far has multimodal imaging come?

作者信息

Boonzaier Natalie R, Piccirillo Sara G M, Watts Colin, Price Stephen J

机构信息

Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK.

Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.

出版信息

CNS Oncol. 2015;4(6):399-410. doi: 10.2217/cns.15.20. Epub 2015 Oct 26.

Abstract

Glioblastoma demonstrates imaging features of intratumor heterogeneity that result from underlying heterogeneous biological properties. This stems from variations in cellular behavior that result from genetic mutations that either drive, or are driven by, heterogeneous microenvironment conditions. Among all imaging methods available, only T1-weighted contrast-enhancing and T2-weighted fluid-attenuated inversion recovery are used in standard clinical glioblastoma assessment and monitoring. Advanced imaging modalities are still considered emerging techniques as appropriate end points and robust methodologies are missing from clinical trials. Discovering how these images specifically relate to the underlying tumor biology may aid in improving quality of clinical trials and understanding the factors involved in regional responses to treatment, including variable drug uptake and effect of radiotherapy. Upon validation and standardization of emerging MR techniques, providing information based on the underlying tumor biology, these images may allow for clinical decision-making that is tailored to an individual's response to treatment.

摘要

胶质母细胞瘤呈现出肿瘤内异质性的影像学特征,这是由潜在的异质生物学特性导致的。这源于细胞行为的变化,而细胞行为变化是由基因突变引起的,这些基因突变要么驱动异质微环境条件,要么受其驱动。在所有可用的成像方法中,只有T1加权对比增强和T2加权液体衰减反转恢复序列用于胶质母细胞瘤的标准临床评估和监测。先进的成像模式仍被视为新兴技术,因为临床试验缺乏合适的终点和稳健的方法。了解这些图像如何具体关联潜在的肿瘤生物学特性,可能有助于提高临床试验质量,并理解区域治疗反应所涉及的因素,包括药物摄取差异和放疗效果。在新兴磁共振技术经过验证和标准化后,基于潜在的肿瘤生物学特性提供信息,这些图像可能有助于根据个体的治疗反应进行临床决策。

相似文献

1
Assessing and monitoring intratumor heterogeneity in glioblastoma: how far has multimodal imaging come?
CNS Oncol. 2015;4(6):399-410. doi: 10.2217/cns.15.20. Epub 2015 Oct 26.
2
Noninvasive Glioblastoma Testing: Multimodal Approach to Monitoring and Predicting Treatment Response.
Dis Markers. 2018 Jan 17;2018:2908609. doi: 10.1155/2018/2908609. eCollection 2018.
3
Multimodal imaging-defined subregions in newly diagnosed glioblastoma: impact on overall survival.
Neuro Oncol. 2019 Feb 14;21(2):264-273. doi: 10.1093/neuonc/noy169.
4
Multimodal Imaging of Nonenhancing Glioblastoma Regions.
Mol Imaging. 2019 Jan-Dec;18:1536012119885222. doi: 10.1177/1536012119885222.
6
Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab.
Neuro Oncol. 2016 Dec;18(12):1680-1687. doi: 10.1093/neuonc/now086. Epub 2016 May 4.
9
Quantitative Clinical Imaging Methods for Monitoring Intratumoral Evolution.
Methods Mol Biol. 2017;1513:61-81. doi: 10.1007/978-1-4939-6539-7_6.

引用本文的文献

1
A neural tract-inspired conduit for facile, on-demand biopsy of glioblastoma.
Neurooncol Adv. 2024 May 8;6(1):vdae064. doi: 10.1093/noajnl/vdae064. eCollection 2024 Jan-Dec.
2
Tracking Therapy Response in Glioblastoma Using 1D Convolutional Neural Networks.
Cancers (Basel). 2023 Aug 7;15(15):4002. doi: 10.3390/cancers15154002.
5
Monocytes carrying GFAP detect glioma, brain metastasis and ischaemic stroke, and predict glioblastoma survival.
Brain Commun. 2020 Dec 26;3(1):fcaa215. doi: 10.1093/braincomms/fcaa215. eCollection 2021.
6
A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI.
Eur Radiol. 2020 May;30(5):3004-3014. doi: 10.1007/s00330-019-06585-y. Epub 2020 Jan 30.

本文引用的文献

1
Genetic and functional diversity of propagating cells in glioblastoma.
Stem Cell Reports. 2015 Jan 13;4(1):7-15. doi: 10.1016/j.stemcr.2014.11.003. Epub 2014 Dec 18.
2
Contributions to drug resistance in glioblastoma derived from malignant cells in the sub-ependymal zone.
Cancer Res. 2015 Jan 1;75(1):194-202. doi: 10.1158/0008-5472.CAN-13-3131. Epub 2014 Nov 18.
3
Pros and cons of current brain tumor imaging.
Neuro Oncol. 2014 Oct;16 Suppl 7(Suppl 7):vii2-11. doi: 10.1093/neuonc/nou224.
4
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.
Science. 2014 Jun 20;344(6190):1396-401. doi: 10.1126/science.1254257. Epub 2014 Jun 12.
7
Quantitative imaging in cancer evolution and ecology.
Radiology. 2013 Oct;269(1):8-15. doi: 10.1148/radiol.13122697.
8
Influence of tumour micro-environment heterogeneity on therapeutic response.
Nature. 2013 Sep 19;501(7467):346-54. doi: 10.1038/nature12626.
9
The causes and consequences of genetic heterogeneity in cancer evolution.
Nature. 2013 Sep 19;501(7467):338-45. doi: 10.1038/nature12625.
10
Cell migration or cytokinesis and proliferation?--revisiting the "go or grow" hypothesis in cancer cells in vitro.
Exp Cell Res. 2013 Dec 10;319(20):3094-103. doi: 10.1016/j.yexcr.2013.08.018. Epub 2013 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验