John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK.
Centre for Evolution and Cancer, Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK.
Stem Cell Reports. 2015 Jan 13;4(1):7-15. doi: 10.1016/j.stemcr.2014.11.003. Epub 2014 Dec 18.
Glioblastoma (GBM) is a lethal malignancy whose clinical intransigence has been linked to extensive intraclonal genetic and phenotypic diversity and the common emergence of therapeutic resistance. This interpretation embodies the implicit assumption that cancer stem cells or tumor-propagating cells are themselves genetically and functionally diverse. To test this, we screened primary GBM tumors by SNP array to identify copy number alterations (a minimum of three) that could be visualized in single cells by multicolor fluorescence in situ hybridization. Interrogation of neurosphere-derived cells (from four patients) and cells derived from secondary transplants of these same cells in NOD-SCID mice allowed us to infer the clonal and phylogenetic architectures. Whole-exome sequencing and single-cell genetic analysis in one case revealed a more complex clonal structure. This proof-of-principle experiment revealed that subclones in each GBM had variable regenerative or stem cell activity, and highlighted genetic alterations associated with more competitive propagating activity in vivo.
胶质母细胞瘤(GBM)是一种致命的恶性肿瘤,其临床难治性与其广泛的克隆内遗传和表型多样性以及常见的治疗耐药性的出现有关。这种解释隐含地假设癌症干细胞或肿瘤增殖细胞本身在遗传和功能上是多样化的。为了验证这一点,我们通过 SNP 阵列对原发性 GBM 肿瘤进行了筛选,以鉴定可以通过多色荧光原位杂交在单细胞中可视化的拷贝数改变(至少三个)。对神经球衍生细胞(来自四位患者)和从这些细胞在 NOD-SCID 小鼠中的二次移植中获得的细胞进行检测,使我们能够推断出克隆和系统发生结构。在一个病例中进行的全外显子组测序和单细胞遗传分析揭示了更复杂的克隆结构。这个原理验证实验表明,每个 GBM 中的亚克隆具有不同的再生或干细胞活性,并突出了与体内更具竞争增殖活性相关的遗传改变。