Suppr超能文献

增强PbS和CdS量子点敏化的TiO₂纳米棒阵列在紫外-可见光下的光电化学产氢活性和稳定性。

Enhance photoelectrochemical hydrogen-generation activity and stability of TiO2 nanorod arrays sensitized by PbS and CdS quantum dots under UV-visible light.

作者信息

Li Lei, Dai Haitao, Feng Liefeng, Luo Dan, Wang Shuguo, Sun Xiaowei

机构信息

Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, China.

Department of Electrical and Electronic Engineering, South University of Science and Technology of China, Shenzhen, 518055, China.

出版信息

Nanoscale Res Lett. 2015 Dec;10(1):418. doi: 10.1186/s11671-015-1129-3. Epub 2015 Oct 26.

Abstract

We develop a composite photoanode by sensitizing TiO2 nanorod arrays with PbS quantum dots (QDs) and CdS QDs. Benefitted from additional introduced PbS QDs and CdS QDs onto TiO2, the absorption of the composite photoanodes are broaden from UV to visible region. The experimental results showed that the PbS sandwiched between TiO2 and CdS cannot only broad the absorption properties but also improve the stability. The stability can be explained by the hole facile transmission from PbS to CdS because of the valence band offsets between PbS and CdS which cause a small energy barrier and reduce the hole accumulation. The photocurrent density reached 1.35 mA cm(-2) at 0.9716 V vs. RHE (0 V vs. Ag/AgCl, under 60 mW cm(-2) illumination) for TiO2/PbS/CdS. The highest photocurrent of TiO2/PbS/CdS can be explained by the smallest of total resistance (138 Ω cm(-2)) compared to TiO2/CdS and pristine TiO2.

摘要

我们通过用硫化铅量子点(QDs)和硫化镉量子点敏化二氧化钛纳米棒阵列来制备复合光阳极。得益于在二氧化钛上额外引入的硫化铅量子点和硫化镉量子点,复合光阳极的吸收范围从紫外区域拓宽到了可见光区域。实验结果表明,夹在二氧化钛和硫化镉之间的硫化铅不仅能拓宽吸收特性,还能提高稳定性。这种稳定性可以通过硫化铅和硫化镉之间的价带偏移导致的小能量势垒以及空穴从硫化铅到硫化镉的容易传输来解释,这减少了空穴积累。在0.9716 V(相对于可逆氢电极,0 V相对于银/氯化银,在60 mW cm(-2)光照下)时,二氧化钛/硫化铅/硫化镉的光电流密度达到1.35 mA cm(-2)。与二氧化钛/硫化镉和原始二氧化钛相比,二氧化钛/硫化铅/硫化镉的最高光电流可以通过最小的总电阻(138 Ω cm(-2))来解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d5/4620110/ac1582f69bea/11671_2015_1129_Fig1_HTML.jpg

相似文献

2
ZnSe and CdS Co-Sensitized TiO Nanorod Arrays as Photoanodes for Bias-Free Solar Hydrogen Evolution.
Chempluschem. 2022 Nov;87(11):e202200304. doi: 10.1002/cplu.202200304.
3
Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays.
Nanoscale Res Lett. 2013 Feb 11;8(1):67. doi: 10.1186/1556-276X-8-67.
8
Heterogeneous p-n Junction CdS/CuO Nanorod Arrays: Synthesis and Superior Visible-Light-Driven Photoelectrochemical Performance for Hydrogen Evolution.
ACS Appl Mater Interfaces. 2018 Apr 11;10(14):11652-11662. doi: 10.1021/acsami.7b19530. Epub 2018 Mar 28.
10
Two-Dimensional Sb Modified TiO Nanorod Arrays as Photoanodes for Efficient Solar Water Splitting.
Nanomaterials (Basel). 2023 Apr 6;13(7):1293. doi: 10.3390/nano13071293.

引用本文的文献

3
Photoexcited Properties of Tin Sulfide Nanosheet-Decorated ZnO Nanorod Heterostructures.
Nanoscale Res Lett. 2017 Dec;12(1):258. doi: 10.1186/s11671-017-2022-z. Epub 2017 Apr 7.
4
Surfactant-free Synthesis of CuO with Controllable Morphologies and Enhanced Photocatalytic Property.
Nanoscale Res Lett. 2016 Dec;11(1):125. doi: 10.1186/s11671-016-1278-z. Epub 2016 Mar 3.

本文引用的文献

1
Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf".
J Phys Chem Lett. 2013 Jan 3;4(1):141-6. doi: 10.1021/jz301890m. Epub 2012 Dec 20.
3
4
Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.
ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6852-9. doi: 10.1021/acsami.5b00417. Epub 2015 Mar 20.
6
C60-decorated CdS/TiO2 mesoporous architectures with enhanced photostability and photocatalytic activity for H2 evolution.
ACS Appl Mater Interfaces. 2015 Mar 4;7(8):4533-40. doi: 10.1021/am5088665. Epub 2015 Feb 18.
8
Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese.
ACS Appl Mater Interfaces. 2014 Apr 23;6(8):5852-9. doi: 10.1021/am500643y. Epub 2014 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验