Chien H-J, Peng S-J, Hua T-E, Kuo C-H, Juang J-H, Tang S-C
Connectomics Research Center, National Tsing Hua University, Hsinchu, Taiwan.
Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
Int J Obes (Lond). 2016 Apr;40(4):685-97. doi: 10.1038/ijo.2015.224. Epub 2015 Oct 26.
Obesity and insulin resistance lead to islet hyperplasia. However, how the islet remodeling influences the pancreatic environment and the associated neurovascular networks is largely unknown. The lack of information is primarily due to the difficulty of global visualization of the hyperplasic islet (>200 μm) and the neurovascular environment with high definition.
We modulated the pancreatic optical property to achieve 3-dimensional (3-D) whole-islet histology and to integrate transmitted light microscopy (which provides the ground-truth tissue information) with confocal fluorescence imaging. The new optical and imaging conditions were used to globally examine the hyperplastic islets of the young (2 months) obese db/db and ob/ob mice, which otherwise cannot be easily portrayed by the standard microtome-based histology. The voxel-based islet micrographs were digitally processed for stereo projection and qualitative and quantitative analyses of the islet tissue networks.
Paired staining and imaging of the pancreatic islets, ducts and neurovascular networks reveal the unexpected formation of the 'neuro-insular-ductal complex' in the young obese mice. The complex consists of the peri- and/or intra-islet ducts and prominent peri-ductal sympathetic nerves; the latter contributes to a marked increase in islet sympathetic innervation. In vascular characterization, we identify a decreased perivascular density of the ob/ob islet pericytes, which adapt to ensheathing the dilated microvessels with hypertrophic processes.
Modulation of pancreatic optical property enables 3-D panoramic examination of islets in the young hyperphagic mice to reveal the formation of the islet-duct complex and neurovascular remodeling. On the basis of the morphological proximity of the remodeled tissue networks, we propose a reactive islet microenvironment consisting of the endocrine cells, ductal epithelium and neurovascular tissues in response to the metabolic challenge that is experienced early in life.
肥胖和胰岛素抵抗会导致胰岛增生。然而,胰岛重塑如何影响胰腺环境及相关神经血管网络在很大程度上尚不清楚。信息匮乏主要是由于难以对增生的胰岛(>200μm)和神经血管环境进行高分辨率的整体可视化。
我们调节胰腺光学特性以实现三维(3-D)全胰岛组织学,并将透射光显微镜(提供真实的组织信息)与共聚焦荧光成像相结合。利用新的光学和成像条件对年轻(2个月)肥胖db/db和ob/ob小鼠的增生胰岛进行整体检查,而标准的基于切片的组织学方法难以轻易描绘这些胰岛。基于体素的胰岛显微照片经过数字处理,用于胰岛组织网络的立体投影以及定性和定量分析。
对胰腺胰岛、导管和神经血管网络进行配对染色和成像,揭示了年轻肥胖小鼠中意外形成的“神经-胰岛-导管复合体”。该复合体由胰岛周围和/或内部导管以及突出的导管周围交感神经组成;后者导致胰岛交感神经支配显著增加。在血管特征方面,我们发现ob/ob胰岛周细胞的血管周围密度降低,它们通过肥大的突起适应包裹扩张的微血管。
调节胰腺光学特性能够对年轻贪食小鼠的胰岛进行3-D全景检查,以揭示胰岛-导管复合体的形成和神经血管重塑。基于重塑组织网络的形态学接近性,我们提出一种反应性胰岛微环境,其由内分泌细胞、导管上皮和神经血管组织组成,以应对生命早期经历的代谢挑战。