Suppr超能文献

连接计量学:一种利用局部连接组学分析潜力的统计学方法。

Connectometry: A statistical approach harnessing the analytical potential of the local connectome.

机构信息

Department of Psychology, Carnegie Mellon University, PA, USA.

Department of Cognitive, Linguistic and Psychological Sciences, Brown University, RI, USA.

出版信息

Neuroimage. 2016 Jan 15;125:162-171. doi: 10.1016/j.neuroimage.2015.10.053. Epub 2015 Oct 21.

Abstract

Here we introduce the concept of the local connectome: the degree of connectivity between adjacent voxels within a white matter fascicle defined by the density of the diffusing spins. While most human structural connectomic analyses can be summarized as finding global connectivity patterns at either end of anatomical pathways, the analysis of local connectomes, termed connectometry, tracks the local connectivity patterns along the fiber pathways themselves in order to identify the subcomponents of the pathways that express significant associations with a study variable. This bottom-up analytical approach is made possible by reconstructing diffusion MRI data into a common stereotaxic space that allows for associating local connectomes across subjects. The substantial associations can then be tracked along the white matter pathways, and statistical inference is obtained using permutation tests on the length of coherent associations and corrected for multiple comparisons. Using two separate samples, with different acquisition parameters, we show how connectometry can capture variability within core white matter pathways in a statistically efficient manner and extract meaningful variability from white matter pathways, complements graph-theoretic connectomic measures, and is more sensitive than region-of-interest approaches.

摘要

在这里,我们介绍了局部连接组的概念:即由扩散自旋密度定义的白质束内相邻体素之间的连通程度。虽然大多数人类结构连接组学分析可以概括为在解剖路径的任一端找到全局连通模式,但局部连接组的分析,即连接计量学,沿着纤维路径本身跟踪局部连通模式,以识别与研究变量表达显著关联的路径的子组件。这种自下而上的分析方法是通过将扩散 MRI 数据重建到一个共同的立体定向空间来实现的,该空间允许在不同受试者之间关联局部连接组。然后可以沿着白质通路跟踪这些显著关联,并使用对相干关联长度的置换检验进行统计推断,并对多次比较进行校正。使用两个具有不同采集参数的独立样本,我们展示了连接计量学如何以高效的统计方式捕捉核心白质通路内的变异性,并从白质通路中提取有意义的变异性,补充图论连接组学度量,并比感兴趣区域方法更敏感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验