Suppr超能文献

连接组谐波对局部灰质和长程白质连接变化的稳健性。

Robustness of connectome harmonics to local gray matter and long-range white matter connectivity changes.

机构信息

IBM T.J. Watson Research Center, Yorktown Heights, New York, USA; IBM Research Australia, Melbourne, Victoria, Australia.

Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

出版信息

Neuroimage. 2021 Jan 1;224:117364. doi: 10.1016/j.neuroimage.2020.117364. Epub 2020 Sep 16.

Abstract

Recently, it has been proposed that the harmonic patterns emerging from the brain's structural connectivity underlie the resting state networks of the human brain. These harmonic patterns, termed connectome harmonics, are estimated as the Laplace eigenfunctions of the combined gray and white matters connectivity matrices and yield a connectome-specific extension of the well-known Fourier basis. However, it remains unclear how topological properties of the combined connectomes constrain the precise shape of the connectome harmonics and their relationships to the resting state networks. Here, we systematically study how alterations of the local and long-range connectivity matrices affect the spatial patterns of connectome harmonics. Specifically, the proportion of local gray matter homogeneous connectivity versus long-range white-matter heterogeneous connectivity is varied by means of weight-based matrix thresholding, distance-based matrix trimming, and several types of matrix randomizations. We demonstrate that the proportion of local gray matter connections plays a crucial role for the emergence of wide-spread, functionally meaningful, and originally published connectome harmonic patterns. This finding is robust for several different cortical surface templates, mesh resolutions, or widths of the local diffusion kernel. Finally, using the connectome harmonic framework, we also provide a proof-of-concept for how targeted structural changes such as the atrophy of inter-hemispheric callosal fibers and gray matter alterations may predict functional deficits associated with neurodegenerative conditions.

摘要

最近有人提出,大脑结构连接下的谐波模式是人类大脑静息状态网络的基础。这些谐波模式被称为连接体谐波,它们是通过对灰质和白质连接矩阵的拉普拉斯特征函数进行估计得到的,是广为人知的傅里叶基的连接体特化形式。然而,目前尚不清楚连接体的拓扑性质如何限制连接体谐波的精确形状及其与静息状态网络的关系。在这里,我们系统地研究了局部和远程连接矩阵的变化如何影响连接体谐波的空间模式。具体来说,通过基于权重的矩阵阈值、基于距离的矩阵修剪和几种类型的矩阵随机化来改变局部灰质同质连接与远程白质异质连接的比例。我们证明了局部灰质连接的比例对于广泛存在的、具有功能意义的、最初发表的连接体谐波模式的出现起着关键作用。这一发现对于几种不同的皮质表面模板、网格分辨率或局部扩散核的宽度都是稳健的。最后,我们使用连接体谐波框架,还提供了一个概念验证,说明靶向结构变化,如半球间胼胝体纤维的萎缩和灰质改变,如何预测与神经退行性疾病相关的功能缺陷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba2e/7779370/0c29ee960a1a/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验