School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0512, USA.
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
Environ Sci Pollut Res Int. 2018 Dec;25(36):35981-35989. doi: 10.1007/s11356-018-1747-2. Epub 2018 Mar 20.
Furanic and phenolic compounds are problematic compounds resulting from the pretreatment of lignocellulosic biomass for biofuel production. Microbial electrolysis cell (MEC) is a promising technology to convert furanic and phenolic compounds to renewable H. The objective of the research presented here was to elucidate the processes and electron equivalents flow during the conversion of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; 4-hydroxybenzoic acid, HBA) compounds in the MEC bioanode. Cyclic voltammograms of the bioanode demonstrated that purely electrochemical reactions in the biofilm attached to the electrode were negligible. Instead, microbial reactions related to the biotransformation of the five parent compounds (i.e., fermentation followed by exoelectrogenesis) were the primary processes resulting in the electron equivalents flow in the MEC bioanode. A mass-based framework of substrate utilization and electron flow was developed to quantify the distribution of the electron equivalents among the bioanode processes, including biomass growth for each of the five parent compounds. Using input parameters of anode efficiency and biomass observed yield coefficients, it was estimated that more than 50% of the SA, FF, and HMF electron equivalents were converted to current. In contrast, only 12 and 9% of VA and HBA electron equivalents, respectively, resulted in current production, while 76 and 79% remained as fermentation end products not further utilized in exoelectrogenesis. For all five compounds, it was estimated that 10% of the initially added electron equivalents were used for fermentative biomass synthesis, while 2 to 13% were used for exoelectrogenic biomass synthesis. The proposed mass-based framework provides a foundation for the simulation of bioanode processes to guide the optimization of MECs converting biomass-derived waste streams to renewable H.
呋喃和酚类化合物是木质纤维素生物质生物燃料生产预处理过程中产生的有问题的化合物。微生物电解池(MEC)是将呋喃和酚类化合物转化为可再生 H 的有前途的技术。本研究的目的是阐明在 MEC 生物阳极中转化两种呋喃(糠醛,FF;5-羟甲基糠醛,HMF)和三种酚类(丁香酸,SA;香草酸,VA;4-羟基苯甲酸,HBA)化合物的过程和电子当量流。生物阳极的循环伏安图表明,附着在电极上的生物膜中的纯电化学反应可以忽略不计。相反,与五种母体化合物的生物转化(即发酵后外加电子生成)相关的微生物反应是导致 MEC 生物阳极中电子当量流的主要过程。建立了基于质量的底物利用和电子流框架,以量化电子当量在生物阳极过程中的分布,包括五种母体化合物中的每一种的生物质生长。使用阳极效率和观察到的生物质产率系数的输入参数,据估计,SA、FF 和 HMF 的电子当量中有超过 50%转化为电流。相比之下,VA 和 HBA 的电子当量只有 12%和 9%分别导致电流产生,而 76%和 79%分别作为发酵的最终产物而没有进一步用于外加电子生成。对于所有五种化合物,据估计,最初添加的电子当量的 10%用于发酵性生物质合成,而 2%至 13%用于外加电子性生物质合成。所提出的基于质量的框架为生物阳极过程的模拟提供了基础,以指导优化将生物质衍生的废物流转化为可再生 H 的 MEC。