Hanson C, Cairns J, Wang L, Sinha S
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
Pharmacogenomics J. 2016 Nov;16(6):573-582. doi: 10.1038/tpj.2015.74. Epub 2015 Oct 27.
This study integrates gene expression, genotype and drug response data in lymphoblastoid cell lines with transcription factor (TF)-binding sites from ENCODE (Encyclopedia of Genomic Elements) in a novel methodology that elucidates regulatory contexts associated with cytotoxicity. The method, GENMi (Gene Expression iN the Middle), postulates that single-nucleotide polymorphisms within TF-binding sites putatively modulate its regulatory activity, and the resulting variation in gene expression leads to variation in drug response. Analysis of 161 TFs and 24 treatments revealed 334 significantly associated TF-treatment pairs. Investigation of 20 selected pairs yielded literature support for 13 of these associations, often from studies where perturbation of the TF expression changes drug response. Experimental validation of significant GENMi associations in taxanes and anthracyclines across two triple-negative breast cancer cell lines corroborates our findings. The method is shown to be more sensitive than an alternative, genome-wide association study-based approach that does not use gene expression. These results demonstrate the utility of GENMi in identifying TFs that influence drug response and provide a number of candidates for further testing.
本研究采用一种新方法,将淋巴母细胞系中的基因表达、基因型和药物反应数据与来自ENCODE(基因组元件百科全书)的转录因子(TF)结合位点整合在一起,阐明了与细胞毒性相关的调控背景。该方法GENMi(中间基因表达)假定TF结合位点内的单核苷酸多态性可能调节其调控活性,基因表达的由此产生的变化导致药物反应的变化。对161个TF和24种治疗方法的分析揭示了334个显著相关的TF-治疗对。对20个选定的配对进行调查,其中13个配对得到了文献支持,这些支持通常来自TF表达的扰动改变药物反应的研究。在两个三阴性乳腺癌细胞系中对紫杉烷类和蒽环类药物中显著的GENMi关联进行实验验证,证实了我们的发现。结果表明,该方法比另一种不使用基因表达的全基因组关联研究方法更敏感。这些结果证明了GENMi在识别影响药物反应的TF方面的实用性,并提供了一些可供进一步测试的候选对象。