Suppr超能文献

使用折射窗口倾斜的高速多焦点阵列扫描。

High-speed multifocal array scanning using refractive window tilting.

作者信息

Tsikouras Anthony, Berman Richard, Andrews David W, Fang Qiyin

机构信息

Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.

Spectral Applied Research, 2 East Beaver Creek Rd., Bldg. #2, Richmond Hill, Ontario, L4B 2N3, Canada.

出版信息

Biomed Opt Express. 2015 Sep 2;6(10):3737-47. doi: 10.1364/BOE.6.003737. eCollection 2015 Oct 1.

Abstract

Confocal microscopy has several advantages over wide-field microscopy, such as out-of-focus light suppression, 3D sectioning, and compatibility with specialized detectors. While wide-field microscopy is a faster approach, multiplexed confocal schemes can be used to make confocal microscopy more suitable for high-throughput applications, such as high-content screening (HCS) commonly used in drug discovery. An increasingly powerful modality in HCS is fluorescence lifetime imaging microscopy (FLIM), which can be used to measure protein-protein interactions through Förster resonant energy transfer (FRET). FLIM-FRET for HCS combines the requirements of high throughput, high resolution and specialized time-resolving detectors, making it difficult to implement using wide-field and spinning disk confocal approaches. We developed a novel foci array scan method that can achieve uniform multiplex confocal acquisition using stationary lenslet arrays for high resolution and high throughput FLIM. Unlike traditional mirror galvanometers, which work in Fourier space between scan lenses, this scan method uses optical flats to steer a 2-dimension foci array through refraction. After integrating this scanning scheme in a multiplexing confocal FLIM system, we demonstrate it offers clear benefits over traditional mirror galvanometer scanners in scan linearity, uniformity, cost and complexity.

摘要

共聚焦显微镜相对于宽视场显微镜具有多个优势,如离焦光抑制、三维切片以及与专用探测器的兼容性。虽然宽视场显微镜是一种更快的方法,但多路复用共聚焦方案可用于使共聚焦显微镜更适合高通量应用,例如药物发现中常用的高内涵筛选(HCS)。HCS中一种越来越强大的模式是荧光寿命成像显微镜(FLIM),它可用于通过Förster共振能量转移(FRET)测量蛋白质-蛋白质相互作用。用于HCS的FLIM-FRET结合了高通量、高分辨率和专用时间分辨探测器的要求,使得使用宽视场和转盘共聚焦方法难以实现。我们开发了一种新颖的焦点阵列扫描方法,该方法可使用固定的微透镜阵列实现均匀的多路复用共聚焦采集,以用于高分辨率和高通量FLIM。与在扫描透镜之间的傅里叶空间中工作的传统镜检振镜不同,这种扫描方法使用光学平板通过折射来引导二维焦点阵列。将这种扫描方案集成到多路复用共聚焦FLIM系统中后,我们证明它在扫描线性度、均匀性、成本和复杂性方面比传统镜检振镜扫描仪具有明显优势。

相似文献

1
High-speed multifocal array scanning using refractive window tilting.
Biomed Opt Express. 2015 Sep 2;6(10):3737-47. doi: 10.1364/BOE.6.003737. eCollection 2015 Oct 1.
2
Multifocal confocal microscopy using a volume holographic lenslet array illuminator.
Opt Express. 2022 Apr 25;30(9):14910-14923. doi: 10.1364/OE.455176.
3
Video-rate scanning confocal microscopy and microendoscopy.
J Vis Exp. 2011 Oct 20(56):3252. doi: 10.3791/3252.
4
Fourier Multiplexed Fluorescence Lifetime Imaging.
Methods Mol Biol. 2021;2350:157-172. doi: 10.1007/978-1-0716-1593-5_11.
5
Light-field tomographic fluorescence lifetime imaging microscopy.
Res Sq. 2023 May 10:rs.3.rs-2883279. doi: 10.21203/rs.3.rs-2883279/v1.
7
Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror.
PLoS One. 2012;7(8):e43942. doi: 10.1371/journal.pone.0043942. Epub 2012 Aug 24.
8
The use of FLIM-FRET for the detection of mitochondria-associated protein interactions.
Methods Mol Biol. 2015;1264:395-419. doi: 10.1007/978-1-4939-2257-4_34.
9
Super-Resolved FRET Imaging by Confocal Fluorescence-Lifetime Single-Molecule Localization Microscopy.
Small Methods. 2023 Jul;7(7):e2201565. doi: 10.1002/smtd.202201565. Epub 2023 May 2.

引用本文的文献

1
Multiplexed confocal FLIM for dynamic molecular imaging in live cells.
Discov Imaging. 2025;2(1):7. doi: 10.1007/s44352-025-00010-5. Epub 2025 May 26.
2
Expanding super-resolution imaging versatility in organisms with multi-confocal image scanning microscopy.
Natl Sci Rev. 2024 Aug 27;11(9):nwae303. doi: 10.1093/nsr/nwae303. eCollection 2024 Sep.
3
Compressed ultrafast tomographic imaging by passive spatiotemporal projections.
Opt Lett. 2021 Apr 1;46(7):1788-1791. doi: 10.1364/OL.420737.
4
5
Single-shot ultrafast optical imaging.
Optica. 2018 Sep 20;5(9):1113-1127. doi: 10.1364/OPTICA.5.001113.

本文引用的文献

1
Design and Performance of a Multi-Point Scan Confocal Microendoscope.
Photonics. 2014 Dec;1(4):421-431. doi: 10.3390/photonics1040421. Epub 2014 Nov 20.
2
A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging.
Biomed Opt Express. 2015 Jan 6;6(2):277-96. doi: 10.1364/BOE.6.000277. eCollection 2015 Feb 1.
3
The use of FLIM-FRET for the detection of mitochondria-associated protein interactions.
Methods Mol Biol. 2015;1264:395-419. doi: 10.1007/978-1-4939-2257-4_34.
4
Nanoscopy with more than 100,000 'doughnuts'.
Nat Methods. 2013 Aug;10(8):737-40. doi: 10.1038/nmeth.2556. Epub 2013 Jul 7.
5
Streak camera crosstalk reduction using a multiple delay optical fiber bundle.
Opt Lett. 2012 Jan 15;37(2):250-2. doi: 10.1364/OL.37.000250.
7
The beautiful cell: high-content screening in drug discovery.
Anal Bioanal Chem. 2010 Sep;398(1):219-26. doi: 10.1007/s00216-010-3788-3. Epub 2010 Jun 25.
10
Multifocal multiphoton microscopy based on multianode photomultiplier tubes.
Opt Express. 2007 Sep 3;15(18):11658-78. doi: 10.1364/oe.15.011658.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验