Suppr超能文献

通过被动时空投影实现的压缩超快断层成像。

Compressed ultrafast tomographic imaging by passive spatiotemporal projections.

作者信息

Lai Yingming, Shang Ruibo, Côté Christian-Yves, Liu Xianglei, Laramée Antoine, Légaré François, Luke Geoffrey P, Liang Jinyang

出版信息

Opt Lett. 2021 Apr 1;46(7):1788-1791. doi: 10.1364/OL.420737.

Abstract

Existing streak-camera-based two-dimensional (2D) ultrafast imaging techniques are limited by long acquisition time, the trade-off between spatial and temporal resolutions, and a reduced field of view. They also require additional components, customization, or active illumination. Here we develop compressed ultrafast tomographic imaging (CUTI), which passively records 2D transient events with a standard streak camera. By grafting the concept of computed tomography to the spatiotemporal domain, the operations of temporal shearing and spatiotemporal integration in a streak camera's data acquisition can be equivalently expressed as the spatiotemporal projection of an (,,) datacube from a certain angle. Aided by a new, to the best of our knowledge, compressed-sensing reconstruction algorithm, the 2D transient event can be accurately recovered in a few measurements. CUTI is exhibited as a new imaging mode universally adaptable to most streak cameras. Implemented in an image-converter streak camera, CUTI captures the sequential arrival of two spatially modulated ultrashort ultraviolet laser pulses at 0.5 trillion frames per second. Applied to a rotating-mirror streak camera, CUTI records an amination of fast-bouncing balls at 5,000 frames per second.

摘要

现有的基于条纹相机的二维超快成像技术受到采集时间长、空间分辨率与时间分辨率之间的权衡以及视场减小的限制。它们还需要额外的组件、定制或主动照明。在此,我们开发了压缩超快层析成像(CUTI),它使用标准条纹相机被动记录二维瞬态事件。通过将计算机断层扫描的概念移植到时空域,条纹相机数据采集中的时间剪切和时空积分操作可以等效地表示为从某个角度对一个(,,)数据立方体的时空投影。借助一种据我们所知全新的压缩感知重建算法,二维瞬态事件可以在几次测量中被准确恢复。CUTI展现为一种普遍适用于大多数条纹相机的新成像模式。在变像管条纹相机中实现时,CUTI以每秒5万亿帧的速度捕捉两个空间调制的超短紫外激光脉冲的相继到达。应用于转镜条纹相机时,CUTI以每秒5000帧的速度记录快速弹跳球的动画。

相似文献

1
Compressed ultrafast tomographic imaging by passive spatiotemporal projections.
Opt Lett. 2021 Apr 1;46(7):1788-1791. doi: 10.1364/OL.420737.
2
Single-shot real-time sub-nanosecond electron imaging aided by compressed sensing: Analytical modeling and simulation.
Micron. 2019 Feb;117:47-54. doi: 10.1016/j.micron.2018.11.003. Epub 2018 Nov 16.
3
Single-shot real-time femtosecond imaging of temporal focusing.
Light Sci Appl. 2018 Aug 8;7:42. doi: 10.1038/s41377-018-0044-7. eCollection 2018.
4
Tutorial on compressed ultrafast photography.
J Biomed Opt. 2024 Jan;29(Suppl 1):S11524. doi: 10.1117/1.JBO.29.S1.S11524. Epub 2024 Jan 30.
5
Single-Shot Reconfigurable Femtosecond Imaging of Ultrafast Optical Dynamics.
Adv Sci (Weinh). 2023 May;10(13):e2207222. doi: 10.1002/advs.202207222. Epub 2023 Mar 4.
7
Tomographic-based 3D scintillation dosimetry using a three-view plenoptic imaging system.
Med Phys. 2020 Aug;47(8):3636-3646. doi: 10.1002/mp.14213. Epub 2020 May 23.
8
Single-shot ultrafast imaging attaining 70 trillion frames per second.
Nat Commun. 2020 Apr 29;11(1):2091. doi: 10.1038/s41467-020-15745-4.
9
Spatial-temporal characterization of photoemission in a streak-mode dynamic transmission electron microscope.
Struct Dyn. 2024 Feb 23;11(1):014303. doi: 10.1063/4.0000219. eCollection 2024 Jan.
10
Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse.
Sci Adv. 2017 Jan 20;3(1):e1601814. doi: 10.1126/sciadv.1601814. eCollection 2017 Jan.

引用本文的文献

1
Roadmap on computational methods in optical imaging and holography [invited].
Appl Phys B. 2024;130(9):166. doi: 10.1007/s00340-024-08280-3. Epub 2024 Aug 29.
2
Spatial-temporal characterization of photoemission in a streak-mode dynamic transmission electron microscope.
Struct Dyn. 2024 Feb 23;11(1):014303. doi: 10.1063/4.0000219. eCollection 2024 Jan.
3
Tutorial on compressed ultrafast photography.
J Biomed Opt. 2024 Jan;29(Suppl 1):S11524. doi: 10.1117/1.JBO.29.S1.S11524. Epub 2024 Jan 30.

本文引用的文献

1
Punching holes in light: recent progress in single-shot coded-aperture optical imaging.
Rep Prog Phys. 2020 Nov;83(11):116101. doi: 10.1088/1361-6633/abaf43.
3
Single-shot compressed optical-streaking ultra-high-speed photography.
Opt Lett. 2019 Mar 15;44(6):1387-1390. doi: 10.1364/OL.44.001387.
4
Single-shot ultrafast optical imaging.
Optica. 2018 Sep 20;5(9):1113-1127. doi: 10.1364/OPTICA.5.001113.
5
A trillion frames per second: the techniques and applications of light-in-flight photography.
Rep Prog Phys. 2018 Oct;81(10):105901. doi: 10.1088/1361-6633/aacca1. Epub 2018 Jun 14.
6
Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse.
Sci Adv. 2017 Jan 20;3(1):e1601814. doi: 10.1126/sciadv.1601814. eCollection 2017 Jan.
7
All Photons Imaging Through Volumetric Scattering.
Sci Rep. 2016 Sep 29;6:33946. doi: 10.1038/srep33946.
8
High-speed multifocal array scanning using refractive window tilting.
Biomed Opt Express. 2015 Sep 2;6(10):3737-47. doi: 10.1364/BOE.6.003737. eCollection 2015 Oct 1.
10
Single-shot compressed ultrafast photography at one hundred billion frames per second.
Nature. 2014 Dec 4;516(7529):74-7. doi: 10.1038/nature14005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验