Norman Louiza, Cabanesa Damien J E, Blanco-Ameijeiras Sonia, Moisset Sophie A M, Hassler Christel S
University of Technology Sydney Plant Functional Biology and Climate Change Cluster PO Box 123 Broadway 2007 NSW, Australia.
University of Geneva Earth and Environmental Sciences Institute F.-A. Forel Marine and Lake Biogeochemistry 10 rte de Suisse CH-1290 Versoix, Switzerland.
Chimia (Aarau). 2014 Nov;68(11):764-71. doi: 10.2533/chimia.2014.764.
Iron (Fe) is an essential trace element for several key metabolic processes in phytoplankton; however Fe is present in low concentration in many aquatic systems including vast oceanic regions and large lakes. In these systems, Fe can limit the growth of phytoplankton and atmospheric carbon dioxide biological fixation. Indeed Fe limitation exerts a global impact on the carbon cycle and the imprint of aquatic systems on our climate. In order to understand how aquatic systems function and increase our ability to predict their response to changing conditions, it is therefore paramount to understand when and how Fe controls operate. This review presents the complex relationship between Fe chemistry and the biology of surface waters to highlight the parameters defining the forms of Fe that are accessible for phytoplankton growth (or bioavailable). Particular attention is given to the identification of Fe sources and Fe organic complexation as these, in conjunction with biological recycling and remineralisation, mostly control Fe residence time, chemistry and bioavailability.
铁(Fe)是浮游植物若干关键代谢过程所必需的微量元素;然而,在包括广阔海洋区域和大型湖泊在内的许多水生系统中,铁的浓度很低。在这些系统中,铁会限制浮游植物的生长以及大气二氧化碳的生物固定。事实上,铁限制对碳循环以及水生系统对我们气候的影响产生全球性影响。为了了解水生系统如何运作并提高我们预测其对变化条件的响应能力,因此至关重要的是要了解铁控制何时以及如何发挥作用。本综述阐述了铁化学与地表水生物学之间的复杂关系,以突出定义可供浮游植物生长利用(即可生物利用)的铁形态的参数。特别关注铁源的识别和铁的有机络合,因为这些与生物循环和再矿化一起,主要控制着铁的停留时间、化学性质和生物可用性。