Centre for Australian Weather and Climate Research, a partnership between Commonwealth Scientific and Industrial Research Organisation and Bureau of Meteorology, Hobart, Tasmania 7000, Australia.
Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1076-81. doi: 10.1073/pnas.1010963108. Epub 2010 Dec 15.
Iron limits primary productivity in vast regions of the ocean. Given that marine phytoplankton contribute up to 40% of global biological carbon fixation, it is important to understand what parameters control the availability of iron (iron bioavailability) to these organisms. Most studies on iron bioavailability have focused on the role of siderophores; however, eukaryotic phytoplankton do not produce or release siderophores. Here, we report on the pivotal role of saccharides--which may act like an organic ligand--in enhancing iron bioavailability to a Southern Ocean cultured diatom, a prymnesiophyte, as well as to natural populations of eukaryotic phytoplankton. Addition of a monosaccharide (>2 nM of glucuronic acid, GLU) to natural planktonic assemblages from both the polar front and subantarctic zones resulted in an increase in iron bioavailability for eukaryotic phytoplankton, relative to bacterioplankton. The enhanced iron bioavailability observed for several groups of eukaryotic phytoplankton (i.e., cultured and natural populations) using three saccharides, suggests it is a common phenomenon. Increased iron bioavailability resulted from the combination of saccharides forming highly bioavailable organic associations with iron and increasing iron solubility, mainly as colloidal iron. As saccharides are ubiquitous, present at nanomolar to micromolar concentrations, and produced by biota in surface waters, they also satisfy the prerequisites to be important constituents of the poorly defined "ligand soup," known to weakly bind iron. Our findings point to an additional type of organic ligand, controlling iron bioavailability to eukaryotic phytoplankton--a key unknown in iron biogeochemistry.
铁元素限制了海洋的大面积初级生产力。考虑到海洋浮游植物贡献了全球生物碳固定的 40%,了解哪些参数控制着这些生物中铁(铁的生物可利用性)的可用性就显得尤为重要。大多数关于铁的生物可利用性的研究都集中在铁载体的作用上;然而,真核浮游植物不产生或释放铁载体。在这里,我们报告了糖在增强铁的生物可利用性方面的关键作用——它可能像有机配体一样——对南大洋培养的硅藻、甲藻以及真核浮游植物的自然种群。在极地锋和亚南极区的自然浮游生物群中添加单糖(>2 nM 的葡萄糖醛酸,GLU)会导致真核浮游植物的铁的生物可利用性相对于细菌增加。使用三种糖观察到的几种真核浮游植物(即培养和自然种群)的增强铁的生物可利用性表明这是一种普遍现象。增强的铁的生物可利用性来自糖与铁形成高度生物可利用的有机结合物并增加铁的溶解度,主要是胶体铁。由于糖普遍存在,浓度在纳摩尔到微摩尔之间,并且是生物在水面产生的,它们也满足了作为定义不明确的“配体汤”的重要组成部分的先决条件,该“配体汤”已知可弱结合铁。我们的发现指向了另一种控制真核浮游植物铁的生物可利用性的有机配体——这是铁生物地球化学中的一个关键未知因素。