Abbott, 100 Abbott Park, R436/AP9A-2, Abbott Park, IL 60064, USA.
Syst Biol. 2011 Mar;60(2):150-60. doi: 10.1093/sysbio/syq085. Epub 2010 Dec 27.
The marginal likelihood is commonly used for comparing different evolutionary models in Bayesian phylogenetics and is the central quantity used in computing Bayes Factors for comparing model fit. A popular method for estimating marginal likelihoods, the harmonic mean (HM) method, can be easily computed from the output of a Markov chain Monte Carlo analysis but often greatly overestimates the marginal likelihood. The thermodynamic integration (TI) method is much more accurate than the HM method but requires more computation. In this paper, we introduce a new method, steppingstone sampling (SS), which uses importance sampling to estimate each ratio in a series (the "stepping stones") bridging the posterior and prior distributions. We compare the performance of the SS approach to the TI and HM methods in simulation and using real data. We conclude that the greatly increased accuracy of the SS and TI methods argues for their use instead of the HM method, despite the extra computation needed.
边际似然通常用于贝叶斯系统发育学中比较不同的进化模型,是计算贝叶斯因子以比较模型拟合度的核心数量。一种流行的估计边际似然的方法,调和均值(HM)方法,可以从马尔可夫链蒙特卡罗分析的输出中轻松计算出来,但往往会大大高估边际似然。热力学积分(TI)方法比 HM 方法准确得多,但需要更多的计算。在本文中,我们引入了一种新的方法,即踏脚石抽样(SS),它使用重要抽样来估计连接后验分布和先验分布的一系列(“踏脚石”)中的每个比率。我们比较了 SS 方法与 TI 和 HM 方法在模拟和使用真实数据中的性能。我们的结论是,SS 和 TI 方法的准确性大大提高,这证明了它们的使用是合理的,尽管需要额外的计算。