Wang Qian, Bai Junfeng, Lu Zhiyong, Pan Yi, You Xiaozeng
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
Chem Commun (Camb). 2016 Jan 11;52(3):443-52. doi: 10.1039/c5cc07751f. Epub 2015 Oct 29.
CO2 capture science and technology, particularly for the post-combustion CO2 capture, has become one of very important research fields, due to great concern of global warming. Metal-organic frameworks (MOFs) with a unique feature of structural fine-tunability, unlike the traditional porous solid materials, can provide many and powerful platforms to explore high-performance adsorbents for post-combustion CO2 capture. Until now, several strategies for finely tuning MOF structures have been developed, in which either the larger quadrupole moment and polarizability of CO2 are considered: metal ion change (I), functional groups attachment (II) and functional group insertion (III), vary the electronic nature of the pore surface; or targeting the smaller kinetic diameter of CO2 over N2 is focused on: framework interpenetration (IV), ligand shortening (V) and coordination site shifting (VI) contract the pore size of frameworks to improve their CO2 capture properties. In this review, from the viewpoint of synthetic materials scientists/chemists, we would like to introduce and summarize these strategies based upon recent work published by other groups and ourselves.
由于全球变暖备受关注,二氧化碳捕集科学与技术,尤其是燃烧后二氧化碳捕集,已成为非常重要的研究领域之一。与传统多孔固体材料不同,金属有机框架材料(MOFs)具有结构可精细调节的独特特性,可为探索用于燃烧后二氧化碳捕集的高性能吸附剂提供众多且强大的平台。到目前为止,已经开发了几种精细调节MOF结构的策略,其中要么考虑二氧化碳较大的四极矩和极化率:金属离子变化(I)、官能团连接(II)和官能团插入(III),改变孔表面的电子性质;要么聚焦于二氧化碳相对于氮气较小的动力学直径:框架互穿(IV)、配体缩短(V)和配位点移动(VI),收缩框架的孔径以改善其二氧化碳捕集性能。在本综述中,我们将从合成材料科学家/化学家的角度,根据其他团队和我们自己最近发表的工作,介绍并总结这些策略。