Junghans Ulrike, Kobalz Merten, Erhart Oliver, Preißler Hannes, Lincke Jörg, Möllmer Jens, Krautscheid Harald, Gläser Roger
Institute of Chemical Technology, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany.
Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.
Materials (Basel). 2017 Mar 24;10(4):338. doi: 10.3390/ma10040338.
The synthesis and characterization of an isomorphous series of copper-containing microporous metal-organic frameworks (MOFs) based on triazolyl isophthalate linkers with the general formula [Cu₄(₃-OH)₂(R¹-R²-trz-ia)₃(H₂O)] are presented. Through size adjustment of the alkyl substituents R¹ and/or R² at the linker, the impact of linker functionalization on structure-property relationships was studied. Due to the arrangement of the substituents towards the cavities, the porosity (pore fraction 28%-39%), as well as the pore size can be adjusted by the size of the substituents of the triazole ring. Thermal analysis and temperature-dependent PXRD studies reveal a thermal stability of the MOFs up to 230 °C due to increasing framework stability through fine-tuning of the linker substitution pattern. Adsorption of CO₂ (298 K) shows a decreasing maximum loading with increasing steric demand of the substituents of the triazole ring. Furthermore, the selective oxidation of cyclohexene with -butyl hydroperoxide (TBHP) is studied over the MOFs at 323 K in liquid chloroform. The catalytic activity increases with the steric demand of the substituents. Additionally, these isomorphous MOFs exhibit considerable robustness under oxidizing conditions confirmed by CO₂ adsorption studies, as well as by the catalytic selective oxidation experiments.
本文介绍了基于间苯二甲酸三唑基连接体、通式为[Cu₄(₃-OH)₂(R¹-R²-trz-ia)₃(H₂O)]的一系列同构含铜微孔金属有机框架(MOF)的合成与表征。通过调节连接体上烷基取代基R¹和/或R²的大小,研究了连接体功能化对结构-性能关系的影响。由于取代基朝向空穴的排列方式,孔隙率(孔隙分数28%-39%)以及孔径可通过三唑环取代基的大小进行调节。热分析和变温粉末X射线衍射(PXRD)研究表明,由于通过微调连接体取代模式提高了框架稳定性,MOF在高达230℃时具有热稳定性。二氧化碳(298K)吸附显示,随着三唑环取代基空间需求的增加,最大吸附量降低。此外,在323K的液态氯仿中,研究了在MOF上用过氧化叔丁基(TBHP)对环己烯进行的选择性氧化。催化活性随取代基的空间需求增加而增加。此外,通过二氧化碳吸附研究以及催化选择性氧化实验证实,这些同构MOF在氧化条件下表现出相当的稳定性。