Department of Computer Science, Centro de Investigacion en Matematicas (CIMAT), A.C., Guanajuato Gto 36240, Mexico.
Department of Computer Science, Centro de Investigacion en Matematicas (CIMAT), A.C., Guanajuato Gto 36240, Mexico.
Med Image Anal. 2015 Dec;26(1):243-55. doi: 10.1016/j.media.2015.10.002. Epub 2015 Oct 22.
On the analysis of the Diffusion-Weighted Magnetic Resonance Images, multi-compartment models overcome the limitations of the well-known Diffusion Tensor model for fitting in vivo brain axonal orientations at voxels with fiber crossings, branching, kissing or bifurcations. Some successful multi-compartment methods are based on diffusion dictionaries. The diffusion dictionary-based methods assume that the observed Magnetic Resonance signal at each voxel is a linear combination of the fixed dictionary elements (dictionary atoms). The atoms are fixed along different orientations and diffusivity profiles. In this work, we present a sparse and adaptive diffusion dictionary method based on the Diffusion Basis Functions Model to estimate in vivo brain axonal fiber populations. Our proposal overcomes the following limitations of the diffusion dictionary-based methods: the limited angular resolution and the fixed shapes for the atom set. We propose to iteratively re-estimate the orientations and the diffusivity profile of the atoms independently at each voxel by using a simplified and easier-to-solve mathematical approach. As a result, we improve the fitting of the Diffusion-Weighted Magnetic Resonance signal. The advantages with respect to the former Diffusion Basis Functions method are demonstrated on the synthetic data-set used on the 2012 HARDI Reconstruction Challenge and in vivo human data. We demonstrate that improvements obtained in the intra-voxel fiber structure estimations benefit brain research allowing to obtain better tractography estimations. Hence, these improvements result in an accurate computation of the brain connectivity patterns.
在对弥散加权磁共振图像的分析中,多腔室模型克服了著名的弥散张量模型在体素中拟合纤维交叉、分支、亲吻或分叉处脑轴突方向的局限性。一些成功的多腔室方法基于扩散字典。基于扩散字典的方法假设在每个体素处观察到的磁共振信号是固定字典元素(字典原子)的线性组合。原子沿着不同的方向和扩散率分布固定。在这项工作中,我们提出了一种基于扩散基函数模型的稀疏和自适应扩散字典方法,用于估计活体脑轴突纤维群。我们的建议克服了基于扩散字典方法的以下局限性:原子集的有限角分辨率和固定形状。我们建议通过使用简化且易于求解的数学方法,在每个体素处迭代地重新估计原子的方向和扩散率分布。结果,我们改进了对弥散加权磁共振信号的拟合。与以前的扩散基函数方法相比,我们在 2012 年高角分辨率弥散重建挑战赛和体内人类数据上使用的合成数据集上证明了该方法的优势。我们证明了在体素内纤维结构估计方面的改进有利于大脑研究,从而可以获得更好的轨迹估计。因此,这些改进导致了大脑连接模式的精确计算。