Matsumoto Yuri, Chen Ritchie, Anikeeva Polina, Jasanoff Alan
Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, Massachusetts 02139, USA.
Department of Materials Science &Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, Massachusetts 02139, USA.
Nat Commun. 2015 Nov 2;6:8721. doi: 10.1038/ncomms9721.
Remote measurement and manipulation of biological systems can be achieved using magnetic techniques, but a missing link is the availability of highly magnetic handles on cellular or molecular function. Here we address this need by using high-throughput genetic screening in yeast to select variants of the iron storage ferritin (Ft) that display enhanced iron accumulation under physiological conditions. Expression of Ft mutants selected from a library of 10(7) variants induces threefold greater cellular iron loading than mammalian heavy chain Ft, over fivefold higher contrast in magnetic resonance imaging, and robust retention on magnetic separation columns. Mechanistic studies of mutant Ft proteins indicate that improved magnetism arises in part from increased iron oxide nucleation efficiency. Molecular-level iron loading in engineered Ft enables detection of individual particles inside cells and facilitates creation of Ft-based intracellular magnetic devices. We demonstrate construction of a magnetic sensor actuated by gene expression in yeast.
利用磁性技术可以实现对生物系统的远程测量和操控,但目前尚缺的一环是可用于细胞或分子功能的高磁性操控手段。在此,我们通过在酵母中进行高通量基因筛选来满足这一需求,以选择在生理条件下表现出增强铁积累的铁储存铁蛋白(Ft)变体。从10⁷个变体文库中筛选出的Ft突变体的表达,可诱导细胞铁负载量比哺乳动物重链Ft高出三倍,在磁共振成像中的对比度高出五倍以上,并且在磁性分离柱上具有强大的保留能力。对突变体Ft蛋白的机制研究表明,磁性的改善部分源于氧化铁成核效率的提高。工程化Ft中的分子水平铁负载能够检测细胞内的单个颗粒,并有助于创建基于Ft的细胞内磁性装置。我们展示了一种由酵母中的基因表达驱动的磁传感器的构建。