文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Magnetizing Biotech-Advances in (In Vivo) Magnetic Enzyme Immobilization.

作者信息

Ölçücü Gizem, Jaeger Karl-Erich, Krauss Ulrich

机构信息

Institute of Bio- and Geosciences IBG-1: Biotechnology Forschungszentrum Jülich GmbH Jülich Germany.

Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich Germany.

出版信息

Eng Life Sci. 2025 Mar 13;25(3):e70000. doi: 10.1002/elsc.70000. eCollection 2025 Mar.


DOI:10.1002/elsc.70000
PMID:40083857
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11904115/
Abstract

Industrial biocatalysis, a multibillion dollar industry, relies on the selectivity and efficacy of enzymes for efficient chemical transformations. However, enzymes, evolutionary adapted to mild biological conditions, often struggle in industrial processes that require harsh reaction conditions, resulting in reduced stability and activity. Enzyme immobilization, which addresses challenges such as enzyme reuse and stability, has therefore become a vital strategy for improving enzyme use in industrial applications. Traditional immobilization techniques rely on the confinement or display of enzymes within/on organic or inorganic supports, while recent advances in synthetic biology have led to the development of solely biological in vivo immobilization methods that streamline enzyme production and immobilization. These methods offer added benefits in terms of sustainability and cost efficiency. In addition, the development and use of multifunctional materials, such as magnetic (nano)materials for enzyme immobilization, has enabled improved separation and purification processes. The combination of both "worlds," opens up new avenues in both (industrial) biocatalysis, fundamental science, and biomedicine. Therefore, in this review, we provide an overview of established and recently emerging methods for the generation of magnetic protein immobilizates, placing a special focus on in vivo immobilization solutions.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/290baf682f3c/ELSC-25-e70000-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/5cfba6d24353/ELSC-25-e70000-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/93b77c92429e/ELSC-25-e70000-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/10d8705dd51c/ELSC-25-e70000-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/83207e3bcf69/ELSC-25-e70000-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/b9ee0cad64d7/ELSC-25-e70000-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/1437f02b7de4/ELSC-25-e70000-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/37a72e5761fa/ELSC-25-e70000-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/290baf682f3c/ELSC-25-e70000-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/5cfba6d24353/ELSC-25-e70000-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/93b77c92429e/ELSC-25-e70000-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/10d8705dd51c/ELSC-25-e70000-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/83207e3bcf69/ELSC-25-e70000-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/b9ee0cad64d7/ELSC-25-e70000-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/1437f02b7de4/ELSC-25-e70000-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/37a72e5761fa/ELSC-25-e70000-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfa/11904115/290baf682f3c/ELSC-25-e70000-g002.jpg

相似文献

[1]
Magnetizing Biotech-Advances in (In Vivo) Magnetic Enzyme Immobilization.

Eng Life Sci. 2025-3-13

[2]
Magnetic protein aggregates generated by supramolecular assembly of ferritin cages - a modular strategy for the immobilization of enzymes.

Front Bioeng Biotechnol. 2024-10-23

[3]
Lipase immobilization on ceramic supports: An overview on techniques and materials.

Biotechnol Adv. 2020-6-23

[4]
Surface-coated magnetic nanostructured materials for robust bio-catalysis and biomedical applications-A review.

J Adv Res. 2022-5

[5]
Integration of Enzyme and Covalent Organic Frameworks: From Rational Design to Applications.

Acc Chem Res. 2024-1-2

[6]
Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications.

Methods Enzymol. 2020

[7]
Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis - A review.

Int J Biol Macromol. 2021-1-15

[8]
Harnessing Lignin Nanoparticles for Sustainable Enzyme Immobilization: Current Paradigms and Future Innovations.

Appl Biochem Biotechnol. 2025-3

[9]
Tailoring the properties of (catalytically)-active inclusion bodies.

Microb Cell Fact. 2019-2-7

[10]
Lignocellulosic residues as supports for enzyme immobilization, and biocatalysts with potential applications.

Int J Biol Macromol. 2022-5-31

本文引用的文献

[1]
Magnetic protein aggregates generated by supramolecular assembly of ferritin cages - a modular strategy for the immobilization of enzymes.

Front Bioeng Biotechnol. 2024-10-23

[2]
A magneto-mechanical genetics toolbox for in vivo neuromodulation.

Nat Nanotechnol. 2024-9

[3]
Green nanobiocatalysts: enhancing enzyme immobilization for industrial and biomedical applications.

PeerJ. 2024

[4]
Expanding chemistry through in vitro and in vivo biocatalysis.

Nature. 2024-7

[5]
In vivo magnetogenetics for cell-type-specific targeting and modulation of brain circuits.

Nat Nanotechnol. 2024-9

[6]
Magnetogenetics as a promising tool for controlling cellular signaling pathways.

J Nanobiotechnology. 2024-6-10

[7]
Biocatalyst immobilization on magnetic nano-architectures for potential applications in condensation reactions.

Microb Biotechnol. 2024-6

[8]
Advancements in enzyme immobilization on magnetic nanomaterials: toward sustainable industrial applications.

RSC Adv. 2024-6-5

[9]
Genetic control of MRI contrast using the manganese transporter Zip14.

Magn Reson Med. 2024-8

[10]
Stability Increase of Phenolic Acid Decarboxylase by a Combination of Protein and Solvent Engineering Unlocks Applications at Elevated Temperatures.

ACS Sustain Chem Eng. 2024-2-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索